Nanoscale pore structure analysis of cementitious materials subjected to delayed ettringite formation

M. Shariful Islam , Yamini Shekar , Benjamin J. Mohr
{"title":"Nanoscale pore structure analysis of cementitious materials subjected to delayed ettringite formation","authors":"M. Shariful Islam ,&nbsp;Yamini Shekar ,&nbsp;Benjamin J. Mohr","doi":"10.1016/j.cement.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>The current study investigates the nanoscale pore structure of cementitious materials subjected to delayed ettringite formation (DEF) under different heat curing conditions up to 4000 days via small angle x-ray scattering (SAXS). Four types of commercially available cement were used and a heat-curing temperature of up to 100 °C was applied. Results indicated that the peak pore size deceased due to the initial ettringite formation filling up the largest pores. Over time, ettringite continues to form in the smallest pores during supersaturation, leading to an apparent increase in average pore size in later age. Once ettringite crystalline pressure exceed the tensile strength of the mortar, nano-cracking initiates. Results revealed that the critical pore size threshold necessary to induce cracking stress due to crystalline pressure in the microstructure was approximately 20 to 25 nm based on the SAXS analysis. The main outcome of this study was to recognize the pore size responsible for the mass expansions of certain mortars subjected to DEF under different heat curing conditions in the long-term of up to 4000 days.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"20 ","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study investigates the nanoscale pore structure of cementitious materials subjected to delayed ettringite formation (DEF) under different heat curing conditions up to 4000 days via small angle x-ray scattering (SAXS). Four types of commercially available cement were used and a heat-curing temperature of up to 100 °C was applied. Results indicated that the peak pore size deceased due to the initial ettringite formation filling up the largest pores. Over time, ettringite continues to form in the smallest pores during supersaturation, leading to an apparent increase in average pore size in later age. Once ettringite crystalline pressure exceed the tensile strength of the mortar, nano-cracking initiates. Results revealed that the critical pore size threshold necessary to induce cracking stress due to crystalline pressure in the microstructure was approximately 20 to 25 nm based on the SAXS analysis. The main outcome of this study was to recognize the pore size responsible for the mass expansions of certain mortars subjected to DEF under different heat curing conditions in the long-term of up to 4000 days.
延迟钙矾石形成胶凝材料的纳米级孔隙结构分析
本研究通过小角x射线散射(SAXS)研究了不同热固化条件下延迟钙矾石形成(DEF)胶凝材料的纳米级孔隙结构。使用了四种市售水泥,热固化温度高达100°C。结果表明,由于初始钙矾石充填了最大孔隙,峰值孔径减小。随着时间的推移,钙矾石继续在过饱和时最小的孔隙中形成,导致后期平均孔径明显增大。一旦钙矾石的结晶压力超过砂浆的抗拉强度,纳米裂缝就开始了。结果表明,基于SAXS分析,微观结构中由于结晶压力而产生裂纹应力所需的临界孔径阈值约为20 ~ 25 nm。本研究的主要结果是识别了在长达4000天的长期高温养护条件下,某些受DEF影响的砂浆的体积膨胀的孔径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信