Pyrolysis behavior of Sabina chinensis leaves: kinetic and thermodynamic analysis based on TG-FTIR and BP neural network

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yuan Wu , Xiaolu Chen , Qian Xie , Fahang Liu , Fasheng Miao , Changhai Li , Yanming Ding
{"title":"Pyrolysis behavior of Sabina chinensis leaves: kinetic and thermodynamic analysis based on TG-FTIR and BP neural network","authors":"Yuan Wu ,&nbsp;Xiaolu Chen ,&nbsp;Qian Xie ,&nbsp;Fahang Liu ,&nbsp;Fasheng Miao ,&nbsp;Changhai Li ,&nbsp;Yanming Ding","doi":"10.1016/j.energy.2025.136819","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass resources play a crucial role in meeting our energy, chemical and material demands. <em>Sabina chinensis</em>, a biomass material with diverse constituents, can be effectively treated using pyrolysis, enhancing its resource utilization. This study investigated the pyrolysis behavior of <em>Sabina chinensis</em> leaves, whose pyrolysis process exhibited three distinct stages: (1) stage Ⅰ (moisture evolution), (2) stage Ⅱ (decomposition of hemicellulose, cellulose, and lignin, yielding CO<sub>2</sub>, methane, methanol, formaldehyde, and other products), and (3) stage Ⅲ (gradual decomposition of metal carbonates in residues). Using deconvolution and model-free methods, fundamental kinetic parameters for the pyrolysis of hemicellulose, cellulose, and lignin were estimated. Activation energies of 160.70, 180.49, and 159.73 kJ/mol were obtained for hemicellulose, cellulose and lignin, respectively. Thermodynamic analysis revealed enthalpy change values of 153.74–181.29 kJ/mol, Gibbs free energy change values of 277.94–338.10 kJ/mol, and negative entropy change values, demonstrating the energy potential of <em>Sabina chinensis</em> leaves. Furthermore, a backpropagation neural network, trained using mass and gas product data at multiple heating rates, successfully predicted the temperature-dependent mass loss and gas yield evolution throughout the pyrolysis process.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"329 ","pages":"Article 136819"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225024612","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass resources play a crucial role in meeting our energy, chemical and material demands. Sabina chinensis, a biomass material with diverse constituents, can be effectively treated using pyrolysis, enhancing its resource utilization. This study investigated the pyrolysis behavior of Sabina chinensis leaves, whose pyrolysis process exhibited three distinct stages: (1) stage Ⅰ (moisture evolution), (2) stage Ⅱ (decomposition of hemicellulose, cellulose, and lignin, yielding CO2, methane, methanol, formaldehyde, and other products), and (3) stage Ⅲ (gradual decomposition of metal carbonates in residues). Using deconvolution and model-free methods, fundamental kinetic parameters for the pyrolysis of hemicellulose, cellulose, and lignin were estimated. Activation energies of 160.70, 180.49, and 159.73 kJ/mol were obtained for hemicellulose, cellulose and lignin, respectively. Thermodynamic analysis revealed enthalpy change values of 153.74–181.29 kJ/mol, Gibbs free energy change values of 277.94–338.10 kJ/mol, and negative entropy change values, demonstrating the energy potential of Sabina chinensis leaves. Furthermore, a backpropagation neural network, trained using mass and gas product data at multiple heating rates, successfully predicted the temperature-dependent mass loss and gas yield evolution throughout the pyrolysis process.
杉木叶片热解行为:基于TG-FTIR和BP神经网络的动力学和热力学分析
生物质资源在满足我们的能源、化学和材料需求方面发挥着至关重要的作用。杉木是一种成分多样的生物质材料,利用热解技术可以有效地处理杉木,提高其资源利用率。本研究考察了杉木叶片的热解行为,杉木叶片的热解过程表现为三个不同的阶段:(1)Ⅰ阶段(水分演化),(2)Ⅱ阶段(半纤维素、纤维素和木质素分解,生成CO2、甲烷、甲醇、甲醛等产物),(3)Ⅲ阶段(残渣中金属碳酸盐逐渐分解)。利用反褶积和无模型方法,估计了半纤维素、纤维素和木质素热解的基本动力学参数。半纤维素、纤维素和木质素的活化能分别为160.70、180.49和159.73 kJ/mol。热力学分析结果显示,林柏叶片的焓变值为153.74 ~ 181.29 kJ/mol,吉布斯自由能变化值为277.94 ~ 338.10 kJ/mol,熵变值为负,表明林柏叶片具有能量势。此外,使用多种加热速率下的质量和气体产物数据进行反向传播神经网络训练,成功预测了整个热解过程中与温度相关的质量损失和气体产率演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信