{"title":"Revolutionizing low-power efficiency: Unveiling the potential of Mg2Ge as source material in double gate vertical TFET design","authors":"Varun Mishra , Anant Negi , Vikas Rathi , Yogesh Kumar Verma , Chandni Tiwari","doi":"10.1016/j.micrna.2025.208214","DOIUrl":null,"url":null,"abstract":"<div><div>Driven by the continuous miniaturization of device geometries and the increasing demand for higher switching speeds to minimize power dissipation, the tunnel field-effect transistor (TFET) presents a viable alternative to the conventional MOSFET. This study undertakes a comprehensive analysis of a Double-Gate Vertical TFET (DG-VTFET) architecture, comparatively evaluating silicon (Si) and magnesium germanide (Mg<sub>2</sub>Ge) as source materials. Exploiting the band-to-band tunneling (BTBT) mechanism and, for the first time, employing the low-bandgap material Mg<sub>2</sub>Ge (0.69 eV at room temperature, significantly lower than the 1.12 eV bandgap of Si), demonstrably superior performance is achieved compared to a conventional Si-based vertical TFET. Specifically, enhancements are observed in ON-state current (I<sub>ON</sub>), average subthreshold swing (SS), threshold voltage (V<sub>th</sub>), and current switching ratio, yielding values of 0.04 mA, 35.60 mV/dec, 0.282 V, and 4.405 × 10<sup>11</sup>, respectively. These results underscore the potential of the Mg<sub>2</sub>Ge-based VTFET for low-power applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208214"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Driven by the continuous miniaturization of device geometries and the increasing demand for higher switching speeds to minimize power dissipation, the tunnel field-effect transistor (TFET) presents a viable alternative to the conventional MOSFET. This study undertakes a comprehensive analysis of a Double-Gate Vertical TFET (DG-VTFET) architecture, comparatively evaluating silicon (Si) and magnesium germanide (Mg2Ge) as source materials. Exploiting the band-to-band tunneling (BTBT) mechanism and, for the first time, employing the low-bandgap material Mg2Ge (0.69 eV at room temperature, significantly lower than the 1.12 eV bandgap of Si), demonstrably superior performance is achieved compared to a conventional Si-based vertical TFET. Specifically, enhancements are observed in ON-state current (ION), average subthreshold swing (SS), threshold voltage (Vth), and current switching ratio, yielding values of 0.04 mA, 35.60 mV/dec, 0.282 V, and 4.405 × 1011, respectively. These results underscore the potential of the Mg2Ge-based VTFET for low-power applications.