Optimization of double absorber antimony chalcogenide-based solar cells: A comprehensive parametric optimization to achieve 28.4 % conversion efficiency

IF 3 Q2 PHYSICS, CONDENSED MATTER
Harshit Saxena , Jaspinder Kaur , Rikmantra Basu , Ajay Kumar Sharma , Jaya Madan , Rahul Pandey
{"title":"Optimization of double absorber antimony chalcogenide-based solar cells: A comprehensive parametric optimization to achieve 28.4 % conversion efficiency","authors":"Harshit Saxena ,&nbsp;Jaspinder Kaur ,&nbsp;Rikmantra Basu ,&nbsp;Ajay Kumar Sharma ,&nbsp;Jaya Madan ,&nbsp;Rahul Pandey","doi":"10.1016/j.micrna.2025.208215","DOIUrl":null,"url":null,"abstract":"<div><div>Antimony Chalcogenides have recently gained prominence as preferable substitutes of hybrid halide perovskites for solar cell implementations because of their phase stability, high absorption coefficient, tunable bandgap and enhanced resilience to environmental degradation effects. They are relatively inexpensive and abundant in nature as well. This study focuses on comparing the photovoltaic parameters of the Antimony chalcogenides-based perovskite solar cell (PSC) with a back surface field layer (BSF) with the photovoltaic parameters of cell without BSF layer. While the study aims to analyse the effect of adding a BSF layer, we further refine the device architecture by calibrating parameters including thickness, doping concentrations and defect densities of the various layers incorporated in the device. The proposed model has double absorber layer (Sb<sub>2</sub>S<sub>3</sub> and Sb<sub>2</sub>Se<sub>3</sub>) and incorporates BSF layer (WSe<sub>2</sub>) to enhance photo-absorption and increase efficiency of solar cell. The model has been investigated using SCAPS-1D software. The proposed model is p<sup>+</sup>-WSe<sub>2</sub>/p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (With BSF) and p-Sb<sub>2</sub>S<sub>3</sub>/n-Sb<sub>2</sub>Se<sub>3</sub>/n-WS<sub>2</sub> (without BSF). The structure without the BSF layer gives an optimized PCE of 25.06 % while the structure with BSF layer gives an optimized PCE of approximately 28.4 %. These optimized structures provide a comprehensive framework for developing non-toxic, durable and highly efficient photovoltaic devices utilizing chalcogenide perovskites. This work also offers valuable insights into bridging the gap between simulation-based approaches and real-world applications while addressing practical challenges in device implementation.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"206 ","pages":"Article 208215"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500144X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony Chalcogenides have recently gained prominence as preferable substitutes of hybrid halide perovskites for solar cell implementations because of their phase stability, high absorption coefficient, tunable bandgap and enhanced resilience to environmental degradation effects. They are relatively inexpensive and abundant in nature as well. This study focuses on comparing the photovoltaic parameters of the Antimony chalcogenides-based perovskite solar cell (PSC) with a back surface field layer (BSF) with the photovoltaic parameters of cell without BSF layer. While the study aims to analyse the effect of adding a BSF layer, we further refine the device architecture by calibrating parameters including thickness, doping concentrations and defect densities of the various layers incorporated in the device. The proposed model has double absorber layer (Sb2S3 and Sb2Se3) and incorporates BSF layer (WSe2) to enhance photo-absorption and increase efficiency of solar cell. The model has been investigated using SCAPS-1D software. The proposed model is p+-WSe2/p-Sb2S3/n-Sb2Se3/n-WS2 (With BSF) and p-Sb2S3/n-Sb2Se3/n-WS2 (without BSF). The structure without the BSF layer gives an optimized PCE of 25.06 % while the structure with BSF layer gives an optimized PCE of approximately 28.4 %. These optimized structures provide a comprehensive framework for developing non-toxic, durable and highly efficient photovoltaic devices utilizing chalcogenide perovskites. This work also offers valuable insights into bridging the gap between simulation-based approaches and real-world applications while addressing practical challenges in device implementation.
双吸收剂硫系锑基太阳能电池的优化:实现28.4%转换效率的综合参数优化
硫系锑由于其相稳定性、高吸收系数、可调带隙和增强的抗环境退化能力,近年来作为杂化卤化物钙钛矿的理想替代品而受到重视。它们在自然界中也相对便宜和丰富。本研究重点比较了有背表面场层(BSF)的硫系锑基钙钛矿太阳能电池(PSC)与无背表面场层的电池的光伏参数。虽然本研究旨在分析添加BSF层的效果,但我们通过校准器件中各层的厚度、掺杂浓度和缺陷密度等参数,进一步完善了器件结构。该模型具有双吸收层(Sb2S3和Sb2Se3)和BSF层(WSe2),以增强太阳能电池的光吸收和提高效率。使用SCAPS-1D软件对该模型进行了研究。提出的模型为p+-WSe2/p- sb2s3 /n-Sb2Se3/n-WS2(带BSF)和p- sb2s3 /n-Sb2Se3/n-WS2(不带BSF)。无BSF层结构的优化PCE为25.06%,有BSF层结构的优化PCE约为28.4%。这些优化的结构为利用硫系钙钛矿开发无毒、耐用和高效的光伏器件提供了一个全面的框架。这项工作还为弥合基于模拟的方法与现实世界应用之间的差距提供了宝贵的见解,同时解决了设备实现中的实际挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信