Emma Gardiner, Mark Stringer, Misko Cubrinovski, Sean Rees, Chris McGann
{"title":"Effect of pumice content on the undrained cyclic behaviour of pumiceous soil","authors":"Emma Gardiner, Mark Stringer, Misko Cubrinovski, Sean Rees, Chris McGann","doi":"10.1016/j.sandf.2025.101629","DOIUrl":null,"url":null,"abstract":"<div><div>Pumice soil grains are characterized by their vesicular nature, which leads to lightweight, crushable grains with an extremely rough and angular surface texture. These characteristics give pumiceous soils particular engineering properties that are distinct from more commonly encountered hard-grained materials, making them problematic for engineers interested in assessing the risk and potential consequences of liquefaction. Natural pumice-rich soils are found with varying amounts of pumice; however, it remains unclear how the quantity of pumice present in a soil mixture alters the behaviour. This paper investigates the effect of pumice content on cyclic resistance using blends of a hard-grained sand and a pumice sand through a series of triaxial tests. Overall, the cyclic resistance was found to reduce with increasing pumice content. Furthermore, the cyclic resistances appeared to fall into three bands: (a) little apparent reduction in cyclic resistance for pumice contents up to 40%, (b) a reduction in cyclic resistance of approximately 20% at pumice contents of 80% and higher, and (c) a transitional zone. However, despite the lower cyclic resistance, the patterns of pore pressure generation and strain development did not appear to be affected by the amount of pumice in the soil mixture.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101629"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pumice soil grains are characterized by their vesicular nature, which leads to lightweight, crushable grains with an extremely rough and angular surface texture. These characteristics give pumiceous soils particular engineering properties that are distinct from more commonly encountered hard-grained materials, making them problematic for engineers interested in assessing the risk and potential consequences of liquefaction. Natural pumice-rich soils are found with varying amounts of pumice; however, it remains unclear how the quantity of pumice present in a soil mixture alters the behaviour. This paper investigates the effect of pumice content on cyclic resistance using blends of a hard-grained sand and a pumice sand through a series of triaxial tests. Overall, the cyclic resistance was found to reduce with increasing pumice content. Furthermore, the cyclic resistances appeared to fall into three bands: (a) little apparent reduction in cyclic resistance for pumice contents up to 40%, (b) a reduction in cyclic resistance of approximately 20% at pumice contents of 80% and higher, and (c) a transitional zone. However, despite the lower cyclic resistance, the patterns of pore pressure generation and strain development did not appear to be affected by the amount of pumice in the soil mixture.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.