Elastic circular organic microcrystals prepared by photoinduced delamination

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chengde Ding, Baolei Tang, Liang Li, Panče Naumov, Hongyu Zhang
{"title":"Elastic circular organic microcrystals prepared by photoinduced delamination","authors":"Chengde Ding, Baolei Tang, Liang Li, Panče Naumov, Hongyu Zhang","doi":"10.1038/s41467-025-59670-w","DOIUrl":null,"url":null,"abstract":"<p>Circular organic crystals are essential as optically transducive components in flexible organic optoelectronics, yet this crystal habit is not easily obtained through traditional crystallization approaches. Here, we present a photoresponsive organic crystalline material that when exposed to ultraviolet or visible light, initially undergoes photoinduced bending, followed by photosalient effect and accompanied by delamination to elastic quasicircular microcrystals. Curvature analysis under different conditions confirms the controllability of this process. Light at 365 nm, 405 nm, and 445 nm generates microcrystals with high curvatures (11–12 mm<sup>−1</sup>), while 470 nm light produces lower curvature (5 mm<sup>−1</sup>), aligning with the absorption profile. Increasing the excitation power from 15 mW to 150 mW results in increase of the yield of microcrystals with high curvatures (10–20 mm<sup>−1</sup>) from 20% to 94%. This light-driven fabrication method provides a controlled and reproducible means of realizing rare crystal morphologies, highlighting the potential for exploring quantitative relationships between such morphologies and their unconventional optical properties.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59670-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Circular organic crystals are essential as optically transducive components in flexible organic optoelectronics, yet this crystal habit is not easily obtained through traditional crystallization approaches. Here, we present a photoresponsive organic crystalline material that when exposed to ultraviolet or visible light, initially undergoes photoinduced bending, followed by photosalient effect and accompanied by delamination to elastic quasicircular microcrystals. Curvature analysis under different conditions confirms the controllability of this process. Light at 365 nm, 405 nm, and 445 nm generates microcrystals with high curvatures (11–12 mm−1), while 470 nm light produces lower curvature (5 mm−1), aligning with the absorption profile. Increasing the excitation power from 15 mW to 150 mW results in increase of the yield of microcrystals with high curvatures (10–20 mm−1) from 20% to 94%. This light-driven fabrication method provides a controlled and reproducible means of realizing rare crystal morphologies, highlighting the potential for exploring quantitative relationships between such morphologies and their unconventional optical properties.

Abstract Image

光诱导分层制备弹性圆形有机微晶体
圆形有机晶体是柔性有机光电子学中必不可少的光导元件,但这种晶体习惯不易通过传统的结晶方法获得。在这里,我们提出了一种光响应有机晶体材料,当暴露在紫外线或可见光下时,最初经历光致弯曲,随后发生光显著效应,并伴随分层形成弹性准圆形微晶体。不同条件下的曲率分析证实了该过程的可控性。365 nm、405 nm和445 nm的光产生的微晶体具有高曲率(11-12 mm−1),而470 nm的光产生的微晶体曲率较低(5 mm−1),与吸收曲线一致。将激发功率从15 mW增加到150 mW,高曲率(10-20 mm−1)微晶的产率从20%提高到94%。这种光驱动制造方法为实现稀有晶体形态提供了一种可控和可复制的手段,突出了探索这种形态与其非常规光学性质之间定量关系的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信