Voltage-Driven All-Solid-State Ionic Control on Co/CoO Antiferromagnet/Ferromagnet Exchange Bias

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-28 DOI:10.1021/acsnano.5c03052
Gabriel Vinicius de Oliveira Silva, Labanya Ghosh, Rabiul Islam, Clodoaldo Irineu Levartoski de Araujo, Guo-Xing Miao
{"title":"Voltage-Driven All-Solid-State Ionic Control on Co/CoO Antiferromagnet/Ferromagnet Exchange Bias","authors":"Gabriel Vinicius de Oliveira Silva, Labanya Ghosh, Rabiul Islam, Clodoaldo Irineu Levartoski de Araujo, Guo-Xing Miao","doi":"10.1021/acsnano.5c03052","DOIUrl":null,"url":null,"abstract":"Spintronics traditionally relies on a large electric current to create magnetic fields or spin torques to manipulate magnetic properties, which inevitably leads to undesirable energy dissipation. Alternatively, the voltage control of magnetism (VCM) promises significantly lower energy costs. In the context of VCM, magneto-ionics distinguishes itself by leveraging voltage-driven ion transport as an energy-efficient approach to control magnetic properties, including magnetization, coercive field, and exchange bias (EB). Herein, we demonstrate that the voltage-driven ionic control of CoO antiferromagnetism allows manipulation of the magnetic properties in exchange-coupled ferromagnetic Co. In a “battery-like” device geometry, a 5 nm Co film is precisely oxidized to realize the Co/CoO heterostructure that is interfaced with a solid-state electrolyte and an anode-like Li ion source. The cathode-like CoO layer reversibly converts back and forth between Co and CoO under gate biases, even after 1000 cycles. This subsequently influences magnetic switching in the exchange-coupled Co layer, which is directly revealed by anisotropic magnetoresistance (AMR) in the Co channel. Our findings demonstrate an efficient method of all-solid-state, voltage-driven, highly reversible ionic control on magnetic channels, offering additional dimensions of control and mass integration capability for spintronic applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"153 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spintronics traditionally relies on a large electric current to create magnetic fields or spin torques to manipulate magnetic properties, which inevitably leads to undesirable energy dissipation. Alternatively, the voltage control of magnetism (VCM) promises significantly lower energy costs. In the context of VCM, magneto-ionics distinguishes itself by leveraging voltage-driven ion transport as an energy-efficient approach to control magnetic properties, including magnetization, coercive field, and exchange bias (EB). Herein, we demonstrate that the voltage-driven ionic control of CoO antiferromagnetism allows manipulation of the magnetic properties in exchange-coupled ferromagnetic Co. In a “battery-like” device geometry, a 5 nm Co film is precisely oxidized to realize the Co/CoO heterostructure that is interfaced with a solid-state electrolyte and an anode-like Li ion source. The cathode-like CoO layer reversibly converts back and forth between Co and CoO under gate biases, even after 1000 cycles. This subsequently influences magnetic switching in the exchange-coupled Co layer, which is directly revealed by anisotropic magnetoresistance (AMR) in the Co channel. Our findings demonstrate an efficient method of all-solid-state, voltage-driven, highly reversible ionic control on magnetic channels, offering additional dimensions of control and mass integration capability for spintronic applications.

Abstract Image

Co/CoO反铁磁体/铁磁体交换偏置的电压驱动全固态离子控制
自旋电子学传统上依靠大电流来产生磁场或自旋扭矩来操纵磁性,这不可避免地导致不希望的能量耗散。另外,磁电压控制(VCM)有望显著降低能源成本。在VCM的背景下,磁离子学通过利用电压驱动离子传输作为一种节能的方法来控制磁性能,包括磁化、矫顽力场和交换偏置(EB),从而脱颖而出。在这里,我们证明了电压驱动的离子控制CoO反铁磁性可以操纵交换耦合铁磁性Co的磁性。在“类似电池”的器件几何结构中,5nm的Co膜被精确氧化以实现Co/CoO异质结构,该异质结构与固态电解质和阳极状Li离子源相连接。阴极样CoO层在栅极偏置下可逆地在Co和CoO之间来回转换,即使经过1000次循环。这随后影响了交换耦合Co层中的磁开关,这直接体现在Co通道中的各向异性磁电阻(AMR)上。我们的研究结果展示了一种在磁通道上进行全固态、电压驱动、高度可逆的离子控制的有效方法,为自旋电子应用提供了额外的控制维度和质量集成能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信