Inequivalence between the Euclidean and Lorentzian Versions of the Type IIB Matrix Model from Lefschetz Thimble Calculations

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Chien-Yu Chou, Jun Nishimura, Ashutosh Tripathi
{"title":"Inequivalence between the Euclidean and Lorentzian Versions of the Type IIB Matrix Model from Lefschetz Thimble Calculations","authors":"Chien-Yu Chou, Jun Nishimura, Ashutosh Tripathi","doi":"10.1103/physrevlett.134.211601","DOIUrl":null,"url":null,"abstract":"The type IIB matrix model is conjectured to describe superstring theory nonperturbatively in terms of ten N</a:mi>×</a:mo>N</a:mi></a:math> bosonic traceless Hermitian matrices <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>A</c:mi><c:mi>μ</c:mi></c:msub></c:math> (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>μ</e:mi><e:mo>=</e:mo><e:mn>0</e:mn><e:mo>,</e:mo><e:mo>…</e:mo><e:mo>,</e:mo><e:mn>9</e:mn></e:math>), whose eigenvalues correspond to (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mn>9</g:mn><g:mo>+</g:mo><g:mn>1</g:mn></g:mrow></g:math>)-dimensional space-time. Quite often, this model has been investigated in its Euclidean version, which is well defined although the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>SO</i:mi></i:mrow><i:mo stretchy=\"false\">(</i:mo><i:mn>9</i:mn><i:mo>,</i:mo><i:mn>1</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math> Lorentz symmetry of the original model is replaced by the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mrow><m:mi>SO</m:mi></m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mn>10</m:mn><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:math> rotational symmetry. Recently, a well-defined model respecting the Lorentz symmetry has been proposed by “gauge-fixing” the Lorentz symmetry nonperturbatively using the Faddeev-Popov procedure. Here we investigate the two models by Monte Carlo simulations overcoming the severe sign problem by the Lefschetz thimble method, in the case of matrix size <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>N</q:mi><q:mo>=</q:mo><q:mn>2</q:mn></q:math> omitting fermionic contributions. We add a quadratic term <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mrow><s:mi>γ</s:mi><s:mi>tr</s:mi><s:mo stretchy=\"false\">(</s:mo><s:msub><s:mrow><s:mi>A</s:mi></s:mrow><s:mrow><s:mi>μ</s:mi></s:mrow></s:msub><s:msup><s:mrow><s:mi>A</s:mi></s:mrow><s:mrow><s:mi>μ</s:mi></s:mrow></s:msup><s:mo stretchy=\"false\">)</s:mo></s:mrow></s:math> in the action and calculate the expectation values of rotationally symmetric (or Lorentz symmetric) observables as a function of the coefficient <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>γ</w:mi></w:math>. Our results exhibit striking differences between the two models around <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>γ</y:mi><y:mo>=</y:mo><y:mn>0</y:mn></y:math> and in the γ</ab:mi>&gt;</ab:mo>0</ab:mn></ab:math> region associated with the appearance of different saddle points, clearly demonstrating their inequivalence against naive expectations from quantum field theory. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"25 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.211601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The type IIB matrix model is conjectured to describe superstring theory nonperturbatively in terms of ten N×N bosonic traceless Hermitian matrices Aμ (μ=0,,9), whose eigenvalues correspond to (9+1)-dimensional space-time. Quite often, this model has been investigated in its Euclidean version, which is well defined although the SO(9,1) Lorentz symmetry of the original model is replaced by the SO(10) rotational symmetry. Recently, a well-defined model respecting the Lorentz symmetry has been proposed by “gauge-fixing” the Lorentz symmetry nonperturbatively using the Faddeev-Popov procedure. Here we investigate the two models by Monte Carlo simulations overcoming the severe sign problem by the Lefschetz thimble method, in the case of matrix size N=2 omitting fermionic contributions. We add a quadratic term γtr(AμAμ) in the action and calculate the expectation values of rotationally symmetric (or Lorentz symmetric) observables as a function of the coefficient γ. Our results exhibit striking differences between the two models around γ=0 and in the γ>0 region associated with the appearance of different saddle points, clearly demonstrating their inequivalence against naive expectations from quantum field theory. Published by the American Physical Society 2025
来自Lefschetz顶针计算的IIB型矩阵模型欧几里得和洛伦兹版本之间的不等价性
用10个N×N玻色子无迹厄米矩阵(μ (μ=0,…,9),其特征值对应于(9+1)维时空,推测IIB型矩阵模型可以无扰动地描述超弦理论。通常,这个模型已经在其欧几里得版本中进行了研究,尽管原始模型的SO(9,1)洛伦兹对称性被SO(10)旋转对称性所取代,但欧几里得版本的定义很好。最近,利用faddev - popov过程对洛伦兹对称进行非摄动“量规固定”,提出了一个关于洛伦兹对称的定义良好的模型。在矩阵大小为N=2的情况下,我们通过蒙特卡罗模拟来研究这两个模型,克服了Lefschetz顶针法的严重符号问题,忽略了费米子的贡献。我们在作用中加入二次项γtr(a μ a μ),并计算旋转对称(或洛伦兹对称)观测值的期望值作为系数γ的函数。我们的结果显示了两个模型在γ=0附近和γ>;0区域之间的显著差异,这与不同鞍点的出现有关,清楚地表明它们与量子场论的天真期望不相等。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信