Structure Switchable Single Fluorophore Biosensor to Measure Dissociation Constant in PAT Aptamer Tailoring

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-28 DOI:10.1002/smll.202504007
Longjiao Zhu, Xinyue Lan, Xingning Xiao, Yangzi Zhang, Zaihui Du, Liwei Cui, Weifeng Chen, Meng Wang, Kunlun Huang, Wentao Xu
{"title":"Structure Switchable Single Fluorophore Biosensor to Measure Dissociation Constant in PAT Aptamer Tailoring","authors":"Longjiao Zhu, Xinyue Lan, Xingning Xiao, Yangzi Zhang, Zaihui Du, Liwei Cui, Weifeng Chen, Meng Wang, Kunlun Huang, Wentao Xu","doi":"10.1002/smll.202504007","DOIUrl":null,"url":null,"abstract":"Aptamers, as synthetic oligonucleotide recognition elements, exhibit remarkable potential in biosensing applications with high specificity, chemical modifiability, and cost-effectiveness. Current approaches remain fundamentally limited by their reliance on expensive instrumentation, complex operation, and labor-intensive modification processes. Here, a structure-switchable single-fluorophore biosensor is developed integrating agarose-immobilized targets with fluorescent light-up extension primers for real-time quantitative PCR (qPCR)-based dissociation constant (<i>K<sub>d</sub></i>) determination. A 78-mer patulin aptamer is used as a model for systematic tailoring. Aptamer M1 with the best affinity (K<i><sub>d</sub></i> = 33.41nm), obtained by removing primer regions and terminal redundant bases, exhibits a 2.5-fold increase in affinity compared to the 78 – mer. Method validation shows consistent trends, confirming reliability of the measurement platform and the efficacy of the aptamer engineering approach. Further, the molecular docking analysis identifies the central stem GC base pairs as the core interaction sites. In all, this study establishes a cost-effective, aptamer affinity quantification platform based on standard qPCR, improveing the quantitative assessment of SELEX-derived aptamers for functional element conversion, providing a robust technical framework for advancing aptamer applications in biosensing.","PeriodicalId":228,"journal":{"name":"Small","volume":"45 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aptamers, as synthetic oligonucleotide recognition elements, exhibit remarkable potential in biosensing applications with high specificity, chemical modifiability, and cost-effectiveness. Current approaches remain fundamentally limited by their reliance on expensive instrumentation, complex operation, and labor-intensive modification processes. Here, a structure-switchable single-fluorophore biosensor is developed integrating agarose-immobilized targets with fluorescent light-up extension primers for real-time quantitative PCR (qPCR)-based dissociation constant (Kd) determination. A 78-mer patulin aptamer is used as a model for systematic tailoring. Aptamer M1 with the best affinity (Kd = 33.41nm), obtained by removing primer regions and terminal redundant bases, exhibits a 2.5-fold increase in affinity compared to the 78 – mer. Method validation shows consistent trends, confirming reliability of the measurement platform and the efficacy of the aptamer engineering approach. Further, the molecular docking analysis identifies the central stem GC base pairs as the core interaction sites. In all, this study establishes a cost-effective, aptamer affinity quantification platform based on standard qPCR, improveing the quantitative assessment of SELEX-derived aptamers for functional element conversion, providing a robust technical framework for advancing aptamer applications in biosensing.

Abstract Image

结构可切换的单荧光团生物传感器测量PAT适体裁剪中的解离常数
适配体作为人工合成的寡核苷酸识别元件,具有高特异性、高化学修饰性和高成本效益,在生物传感领域具有显著的应用潜力。目前的方法仍然从根本上受到限制,因为它们依赖于昂贵的仪器、复杂的操作和劳动密集型的修改过程。本研究开发了一种结构可切换的单荧光团生物传感器,将琼脂糖固定靶标与荧光发光延伸引物结合,用于基于实时定量PCR (qPCR)的解离常数(Kd)测定。一个78-mer的棒霉素适体被用作系统剪裁的模型。通过去除引物区域和末端冗余碱基获得的适应性最佳的适配体M1 (Kd = 33.41nm),其亲和力比78 - mer提高了2.5倍。方法验证显示出一致的趋势,证实了测量平台的可靠性和适配工程方法的有效性。此外,分子对接分析确定了中心茎GC碱基对为核心相互作用位点。总之,本研究建立了一个基于标准qPCR的经济高效的适配体亲和力定量平台,提高了selex衍生适配体用于功能元件转化的定量评估,为推进适配体在生物传感中的应用提供了强大的技术框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信