Harini Ramalingam, Jesus Alvarez, Andrea Flaten, Patricia Cobo-Stark, Nicholas Foster, Elyse Grilli, Ronak Lakhia, Karam Aboudehen, Thomas Carroll, Vishal Patel
{"title":"An RNA transmethylation pathway governs kidney nephrogenic potential","authors":"Harini Ramalingam, Jesus Alvarez, Andrea Flaten, Patricia Cobo-Stark, Nicholas Foster, Elyse Grilli, Ronak Lakhia, Karam Aboudehen, Thomas Carroll, Vishal Patel","doi":"10.1038/s41467-025-60097-6","DOIUrl":null,"url":null,"abstract":"<p>The adult kidney lacks the ability to generate new nephrons, placing individuals born with low nephron counts at greater risk for chronic kidney disease as they age. Limited nutrient availability hinders nephron formation; however, the key metabolic dependencies remain unclear. Here we show that S-adenosylmethionine (SAM) and cellular transmethylation status are crucial determinants of the kidney’s nephrogenic capacity. The RNA methyltransferase METTL3 serves as a SAM sensor and is essential for the fate determination of nephron progenitor cells (NPCs). Reducing transmethylation or inhibiting METTL3 blocks NPC differentiation and nephrogenesis, whereas enhancing transmethylation or increasing METTL3 activity facilitates an induced NPC population and increases nephron production. Additionally, we identify <i>Lrpprc</i> mRNA, encoding a mitochondrially enriched protein, as a key direct target of METTL3-mediated transmethylation. Accordingly, inhibiting LRPPRC negates the nephrogenic effects of SAM and METTL3. Our findings reveal a modifiable methionine-SAM-RNA transmethylation pathway that can be targeted to enhance nephron formation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"59 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60097-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The adult kidney lacks the ability to generate new nephrons, placing individuals born with low nephron counts at greater risk for chronic kidney disease as they age. Limited nutrient availability hinders nephron formation; however, the key metabolic dependencies remain unclear. Here we show that S-adenosylmethionine (SAM) and cellular transmethylation status are crucial determinants of the kidney’s nephrogenic capacity. The RNA methyltransferase METTL3 serves as a SAM sensor and is essential for the fate determination of nephron progenitor cells (NPCs). Reducing transmethylation or inhibiting METTL3 blocks NPC differentiation and nephrogenesis, whereas enhancing transmethylation or increasing METTL3 activity facilitates an induced NPC population and increases nephron production. Additionally, we identify Lrpprc mRNA, encoding a mitochondrially enriched protein, as a key direct target of METTL3-mediated transmethylation. Accordingly, inhibiting LRPPRC negates the nephrogenic effects of SAM and METTL3. Our findings reveal a modifiable methionine-SAM-RNA transmethylation pathway that can be targeted to enhance nephron formation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.