{"title":"Stable narrowband blue OLEDs by modulating frontier molecular orbital levels","authors":"Xiao-Chun Fan, Xun Tang, Tong-Yuan Zhang, Shintaro Kohata, Jia Yu, Xian-Kai Chen, Kai Wang, Takuji Hatakeyama, Chihaya Adachi, Xiao-Hong Zhang","doi":"10.1038/s41467-025-60172-y","DOIUrl":null,"url":null,"abstract":"<p>Energy level alignment of frontier molecular orbital (FMO) is essential for controlling charge carrier and exciton dynamics in organic light-emitting diodes (OLEDs). However, multiple resonance (MR) emitters with exceptional narrowband luminescence typically suffer from inadequate FMO levels. Herein, a conventional blue MR prototype with a shallow highest occupied molecular orbital (HOMO) level of −5.32 eV is initially employed to reveal the charge carrier and exciton dynamics. Severe hole trapping by its shallow HOMO significantly hinders its transport. More importantly, trapped carriers induce direct exciton formation and recombination at MR emitters in a hyperfluorescent system, leading to triplet accumulation in MR emitters. To resolve these issues, a proof-of-concept wavefunction perturbation strategy is proposed by incorporating cyano motifs at peripheral sites of MR backbone to adjust the energy levels. This approach significantly shifts HOMOs of 0.36 and 0.51 eV without compromising colour purity. The derivative substituting <i>meta</i>-boron position (<i>m</i>CNDB) exhibits a pure-blue emission peaking at 459 nm with a narrow bandwidth of 13 nm. The detrimental carrier trapping effect is eliminated, enhancing external quantum efficiency to exceeding 23%, maintaining around 20% at 1000 cd m<sup>−2</sup>, and improving the device stability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"134 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60172-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Energy level alignment of frontier molecular orbital (FMO) is essential for controlling charge carrier and exciton dynamics in organic light-emitting diodes (OLEDs). However, multiple resonance (MR) emitters with exceptional narrowband luminescence typically suffer from inadequate FMO levels. Herein, a conventional blue MR prototype with a shallow highest occupied molecular orbital (HOMO) level of −5.32 eV is initially employed to reveal the charge carrier and exciton dynamics. Severe hole trapping by its shallow HOMO significantly hinders its transport. More importantly, trapped carriers induce direct exciton formation and recombination at MR emitters in a hyperfluorescent system, leading to triplet accumulation in MR emitters. To resolve these issues, a proof-of-concept wavefunction perturbation strategy is proposed by incorporating cyano motifs at peripheral sites of MR backbone to adjust the energy levels. This approach significantly shifts HOMOs of 0.36 and 0.51 eV without compromising colour purity. The derivative substituting meta-boron position (mCNDB) exhibits a pure-blue emission peaking at 459 nm with a narrow bandwidth of 13 nm. The detrimental carrier trapping effect is eliminated, enhancing external quantum efficiency to exceeding 23%, maintaining around 20% at 1000 cd m−2, and improving the device stability.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.