Bioinspired double-layer thermogalvanic cells with engineered ionic gradients for high-efficiency waste heat recovery

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Cheng Chi , Xingyu Zhang , Chen Shen , Qi Hu , Ze Liu , Jiahao Hu , Zhi Li , Yang Li , Xiaoli Yu , Hao Xiao , Zhaoquan Zhao , Yuan Yao , Xing Liang , Hongwei Wu , Xiaoze Du
{"title":"Bioinspired double-layer thermogalvanic cells with engineered ionic gradients for high-efficiency waste heat recovery","authors":"Cheng Chi ,&nbsp;Xingyu Zhang ,&nbsp;Chen Shen ,&nbsp;Qi Hu ,&nbsp;Ze Liu ,&nbsp;Jiahao Hu ,&nbsp;Zhi Li ,&nbsp;Yang Li ,&nbsp;Xiaoli Yu ,&nbsp;Hao Xiao ,&nbsp;Zhaoquan Zhao ,&nbsp;Yuan Yao ,&nbsp;Xing Liang ,&nbsp;Hongwei Wu ,&nbsp;Xiaoze Du","doi":"10.1016/j.nanoen.2025.111189","DOIUrl":null,"url":null,"abstract":"<div><div>Thermogalvanic cells (TGCs) have emerged as a promising technology for harvesting low-grade thermal energy, but their widespread application has been hindered by limited conversion efficiencies. A critical factor in enhancing TGC performance lies in establishing substantial ion concentration gradients, which remains challenging due to the inherent tendency of ion pairing. Here, we present a double-layer thermogalvanic cell (DTGC) architecture that spatially segregates redox pairs into two distinct gel layers, enabling unprecedented control over ion concentration gradients. This innovative design yields a single p-type gelatin-K<sub>4</sub>[Fe(CN)<sub>6</sub>]/K<sub>3</sub>[Fe(CN)<sub>6</sub>] DTGC unit with remarkable performance metrics of an open-circuit voltage of 220 mV, a power density of 1.73 mW m<sup>−2</sup> K<sup>−2</sup>, and a relative Carnot efficiency (<em>η</em><sub>r</sub>) of 1.34 % at ΔT = 10 K, representing a tenfold improvement over conventional TGCs. Scaling up this technology, we demonstrate a modular thermoelectric generator comprising a 4 × 12 array of alternating p-type and n-type DTGCs, capable of delivering an output voltage exceeding 11.3 V at ΔT = 20 K, sufficient to directly power commercial LED lights and electronic displays. This work establishes a new paradigm for efficient low-grade thermal energy conversion, offering a scalable and practical solution for waste heat recovery applications.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"142 ","pages":"Article 111189"},"PeriodicalIF":16.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525005488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermogalvanic cells (TGCs) have emerged as a promising technology for harvesting low-grade thermal energy, but their widespread application has been hindered by limited conversion efficiencies. A critical factor in enhancing TGC performance lies in establishing substantial ion concentration gradients, which remains challenging due to the inherent tendency of ion pairing. Here, we present a double-layer thermogalvanic cell (DTGC) architecture that spatially segregates redox pairs into two distinct gel layers, enabling unprecedented control over ion concentration gradients. This innovative design yields a single p-type gelatin-K4[Fe(CN)6]/K3[Fe(CN)6] DTGC unit with remarkable performance metrics of an open-circuit voltage of 220 mV, a power density of 1.73 mW m−2 K−2, and a relative Carnot efficiency (ηr) of 1.34 % at ΔT = 10 K, representing a tenfold improvement over conventional TGCs. Scaling up this technology, we demonstrate a modular thermoelectric generator comprising a 4 × 12 array of alternating p-type and n-type DTGCs, capable of delivering an output voltage exceeding 11.3 V at ΔT = 20 K, sufficient to directly power commercial LED lights and electronic displays. This work establishes a new paradigm for efficient low-grade thermal energy conversion, offering a scalable and practical solution for waste heat recovery applications.

Abstract Image

具有工程离子梯度的生物启发双层热电电池,用于高效废热回收
热电电池(TGCs)已成为一种很有前途的低品位热能收集技术,但其广泛应用受到有限的转换效率的阻碍。提高TGC性能的一个关键因素是建立大量的离子浓度梯度,由于离子配对的固有倾向,这仍然是一个挑战。在这里,我们提出了一种突破性的双层热电电池(DTGC)结构,它在空间上将氧化还原对分离成两个不同的凝胶层,从而实现了对离子浓度梯度的前所未有的控制。这种创新的设计产生了一种单一的p型明胶- k4 [Fe(CN)6]/K3[Fe(CN)6] DTGC装置,具有显著的性能指标,开路电压为220 mV,功率密度为1.73 mW m-2 K-2,相对卡诺效率(ηr)在ΔT = 10 K时为1.34%,比传统的tgc提高了十倍。扩展这项技术,我们展示了一种模块化热电发电机,包括4×12交替p型和n型DTGCs阵列,能够在ΔT = 20 K时提供超过11.3 V的输出电压,足以直接为商用LED灯和电子显示器供电。这项工作为高效的低品位热能转换建立了一个新的范例,为废热回收应用提供了一个可扩展和实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信