{"title":"Dark plasmas in the nonlinear regime: Constraints from particle-in-cell simulations","authors":"William DeRocco, Pierce Giffin","doi":"10.1103/physrevd.111.095031","DOIUrl":null,"url":null,"abstract":"If the dark sector possesses long-range self-interactions, these interactions can source dramatic collective instabilities even in astrophysical settings where the collisional mean free path is long. Here, we focus on the specific case of dark matter halos composed of a dark U</a:mi>(</a:mo>1</a:mn>)</a:mo></a:mrow></a:math> gauge sector undergoing a dissociative cluster merger. We study this by performing the first dedicated particle-in-cell plasma simulations of interacting dark matter streams, tracking the growth, formation, and saturation of instabilities through both the linear and nonlinear regimes. We find that these instabilities give rise to local (dark) electromagnetic inhomogeneities that serve as scattering sites, inducing an effective dynamic collisional cross section. Mapping this effective cross section onto existing results from large-scale simulations of the Bullet Cluster, we extend the limit on the dark charge-to-mass ratio by over 10 orders of magnitude. Our results serve as a simple example of the rich phenomenology that may arise in a dark sector with long-range interactions and motivate future dedicated study of such “dark plasmas.” <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.095031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
If the dark sector possesses long-range self-interactions, these interactions can source dramatic collective instabilities even in astrophysical settings where the collisional mean free path is long. Here, we focus on the specific case of dark matter halos composed of a dark U(1) gauge sector undergoing a dissociative cluster merger. We study this by performing the first dedicated particle-in-cell plasma simulations of interacting dark matter streams, tracking the growth, formation, and saturation of instabilities through both the linear and nonlinear regimes. We find that these instabilities give rise to local (dark) electromagnetic inhomogeneities that serve as scattering sites, inducing an effective dynamic collisional cross section. Mapping this effective cross section onto existing results from large-scale simulations of the Bullet Cluster, we extend the limit on the dark charge-to-mass ratio by over 10 orders of magnitude. Our results serve as a simple example of the rich phenomenology that may arise in a dark sector with long-range interactions and motivate future dedicated study of such “dark plasmas.” Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.