{"title":"Electron Cloaking in MoS2 for High-Performance Optoelectronics","authors":"Yu-Xiang Chen, Jian-Jhang Lee, Ding-Rui Chen, You-Chen Lin, Hao-Ting Chin, Xiu-Yu Huang, Sheng-Kuei Chiu, Chu-Chi Ting, Mario Hofmann, Ya-Ping Hsieh","doi":"10.1021/acs.nanolett.5c02169","DOIUrl":null,"url":null,"abstract":"Defects in two-dimensional (2D) materials represent both challenges and opportunities to their optoelectronic performance. While defects limit the carrier mobility in transistors through increased charge scattering, they also enhance 2D material functionality in sensors. Electron cloaking, a process that reduces Coulomb scattering via localized electron–defect interactions, has recently been shown to mitigate the performance degradation of bulk semiconductors in the presence of defects. We demonstrate the realization of electron cloaking in 2D materials through the metal decoration of defects. Sulfur vacancies were introduced in MoS<sub>2</sub> and selectively decorated with aluminum using atomic layer deposition. Theoretical and experimental characterization demonstrate the suppression of electronic scattering through localized interactions. Optoelectronic measurements reveal a significant improvement in carrier mobility and lifetime, highlighting the effectiveness of the cloaking mechanism. Our findings open a route independently to maximize performance and functionality of optoelectronic devices, which is illustrated by the realization photosensors with unprecedented sensitivity and speed.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"125 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Defects in two-dimensional (2D) materials represent both challenges and opportunities to their optoelectronic performance. While defects limit the carrier mobility in transistors through increased charge scattering, they also enhance 2D material functionality in sensors. Electron cloaking, a process that reduces Coulomb scattering via localized electron–defect interactions, has recently been shown to mitigate the performance degradation of bulk semiconductors in the presence of defects. We demonstrate the realization of electron cloaking in 2D materials through the metal decoration of defects. Sulfur vacancies were introduced in MoS2 and selectively decorated with aluminum using atomic layer deposition. Theoretical and experimental characterization demonstrate the suppression of electronic scattering through localized interactions. Optoelectronic measurements reveal a significant improvement in carrier mobility and lifetime, highlighting the effectiveness of the cloaking mechanism. Our findings open a route independently to maximize performance and functionality of optoelectronic devices, which is illustrated by the realization photosensors with unprecedented sensitivity and speed.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.