Acid-Etched Self-Assembled Carbonyl Interface toward Dendrite-Free and Long-Cycling Aqueous Zinc Metal Batteries

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jian Li, Xingyun Yang, Miaomiao Zhao, Yaping Wang, Yifang Zhang
{"title":"Acid-Etched Self-Assembled Carbonyl Interface toward Dendrite-Free and Long-Cycling Aqueous Zinc Metal Batteries","authors":"Jian Li, Xingyun Yang, Miaomiao Zhao, Yaping Wang, Yifang Zhang","doi":"10.1021/acs.langmuir.5c01556","DOIUrl":null,"url":null,"abstract":"Uncontrolled dendrite growth, severe parasitic reactions, and sluggish interfacial kinetics at the Zn electrode–electrolyte interface critically impede the commercialization of zinc metal batteries. Herein, an in situ acid-etching strategy was used to automatically fabricate a multifunctional interfacial coating enriched with carbonyl oxygen moieties on zinc foils through aqueous adipic acid treatment (denoted as the AZ@Zn-8 electrode). This engineered surface layer demonstrates enhanced zincophilic characteristics, which significantly improve ion transport kinetics while ensuring a uniform zinc deposition/dissolution behavior during electrochemical processes. The firmly bonded AZ coating on zinc substrates, combined with the strategically oriented (002)<sub>Zn</sub> planes, synergistically ensures superior corrosion resistance. Consequently, the AZ@Zn-8 electrodes display an ultralong cycle stability over 4800 h at 2 mA cm<sup>–2</sup>. Furthermore, the full cells assembled incorporating LiFePO<sub>4</sub>/C and NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> cathode materials demonstrate an enhanced electrochemical performance. Therefore, the stabilized Zn anode enabled by acid etching to spontaneously form a functional interfacial layer offers a straightforward and efficient approach for aqueous zinc metal batteries.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"45 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c01556","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrolled dendrite growth, severe parasitic reactions, and sluggish interfacial kinetics at the Zn electrode–electrolyte interface critically impede the commercialization of zinc metal batteries. Herein, an in situ acid-etching strategy was used to automatically fabricate a multifunctional interfacial coating enriched with carbonyl oxygen moieties on zinc foils through aqueous adipic acid treatment (denoted as the AZ@Zn-8 electrode). This engineered surface layer demonstrates enhanced zincophilic characteristics, which significantly improve ion transport kinetics while ensuring a uniform zinc deposition/dissolution behavior during electrochemical processes. The firmly bonded AZ coating on zinc substrates, combined with the strategically oriented (002)Zn planes, synergistically ensures superior corrosion resistance. Consequently, the AZ@Zn-8 electrodes display an ultralong cycle stability over 4800 h at 2 mA cm–2. Furthermore, the full cells assembled incorporating LiFePO4/C and NH4V4O10 cathode materials demonstrate an enhanced electrochemical performance. Therefore, the stabilized Zn anode enabled by acid etching to spontaneously form a functional interfacial layer offers a straightforward and efficient approach for aqueous zinc metal batteries.
酸蚀自组装羰基界面制备无枝晶长循环锌金属水电池
不受控制的枝晶生长、严重的寄生反应以及锌电极-电解质界面缓慢的界面动力学严重阻碍了锌金属电池的商业化。本文采用原位酸蚀刻策略,通过水己二酸处理(表示为AZ@Zn-8电极),在锌箔上自动制备了富含羰基氧基团的多功能界面涂层。该工程表面层具有增强的亲锌特性,显著改善了离子传输动力学,同时确保了电化学过程中均匀的锌沉积/溶解行为。锌基板上牢固结合的AZ涂层与战略取向(002)Zn平面相结合,协同确保了卓越的耐腐蚀性。因此,AZ@Zn-8电极在2 mA cm-2下表现出超过4800 h的超长循环稳定性。此外,采用LiFePO4/C和NH4V4O10正极材料组装的全电池表现出增强的电化学性能。因此,酸蚀稳定锌阳极能够自发形成功能界面层,为水性锌金属电池提供了一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信