Hongxing He, Shunfei Li, Xintao Yang, Ying Xu, Siqing Ye, Haonan Dong, Mengye Yang, Ni Yang, Yi Zhang, Zhifeng Nie
{"title":"Superhydrophilic Quaternized Electrospun Nanofibers for Fast and Efficient Removal of Cr(VI) from Metallurgical Wastewater","authors":"Hongxing He, Shunfei Li, Xintao Yang, Ying Xu, Siqing Ye, Haonan Dong, Mengye Yang, Ni Yang, Yi Zhang, Zhifeng Nie","doi":"10.1021/acs.langmuir.5c01799","DOIUrl":null,"url":null,"abstract":"Due to the low adsorption capacity, slow adsorption kinetics, and insufficient selectivity of conventional adsorbents in highly acidic environments, therefore, the removal of highly toxic Cr(VI) from industrial metallurgical wastewater remains a great challenge. Herein, a novel superhydrophilic quaternized nanofiber adsorbent was synthesized using electrospinning technology. The superhydrophilic nanofiber adsorbent facilitated water molecule movement during the adsorption process, which increased the system’s free energy and thus promoted the efficient and rapid selective removal of Cr(VI). The adsorbent was completely wetted within 0.06 s and reached a maximum adsorption capacity of 450.33 mg/g in a Cr(VI) solution with an initial concentration of 400 mg/L and equilibrated within 20 min. Adsorption experiments showed that the correlation coefficients of the pseudo-secondary kinetics and Langmuir model of the process were as high as <i>R</i><sub>2</sub><sup>2</sup> = 0.994 and <i>R</i><sub>L</sub><sup>2</sup> = 0.971–0.993, respectively, suggesting that the adsorption process is mainly surface adsorption driven by chemisorption. Moreover, the adsorption mechanism by Zeta potential analysis and XPS and DFT simulations revealed that the selective adsorption for Cr(VI) is the synergistic action of ion exchange and coordination by electrostatic attraction. In addition, the dynamic column adsorption test demonstrated that the adsorbent could adsorb 6000 times its own mass of Cr(VI) ions in metallurgical wastewater, the recovery of Cr(VI) by nanofibers could still reach 89.7% after five cycles, and the removal efficiency was as high as 95.64% in real metallurgical wastewater, which highlighted the potential of its practical application.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c01799","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the low adsorption capacity, slow adsorption kinetics, and insufficient selectivity of conventional adsorbents in highly acidic environments, therefore, the removal of highly toxic Cr(VI) from industrial metallurgical wastewater remains a great challenge. Herein, a novel superhydrophilic quaternized nanofiber adsorbent was synthesized using electrospinning technology. The superhydrophilic nanofiber adsorbent facilitated water molecule movement during the adsorption process, which increased the system’s free energy and thus promoted the efficient and rapid selective removal of Cr(VI). The adsorbent was completely wetted within 0.06 s and reached a maximum adsorption capacity of 450.33 mg/g in a Cr(VI) solution with an initial concentration of 400 mg/L and equilibrated within 20 min. Adsorption experiments showed that the correlation coefficients of the pseudo-secondary kinetics and Langmuir model of the process were as high as R22 = 0.994 and RL2 = 0.971–0.993, respectively, suggesting that the adsorption process is mainly surface adsorption driven by chemisorption. Moreover, the adsorption mechanism by Zeta potential analysis and XPS and DFT simulations revealed that the selective adsorption for Cr(VI) is the synergistic action of ion exchange and coordination by electrostatic attraction. In addition, the dynamic column adsorption test demonstrated that the adsorbent could adsorb 6000 times its own mass of Cr(VI) ions in metallurgical wastewater, the recovery of Cr(VI) by nanofibers could still reach 89.7% after five cycles, and the removal efficiency was as high as 95.64% in real metallurgical wastewater, which highlighted the potential of its practical application.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).