Rachael Stewart, George A. Younes, Alice K. Harding, Zorawar Wadiasingh, Matthew G. Baring, Michela Negro, Tod E. Strohmayer, Wynn C. G. Ho, Mason Ng, Zaven Arzoumanian, Hoa Dinh Thi, Niccolò Di Lalla, Teruaki Enoto, Keith Gendreau, Chin-Ping Hu, Alex van Kooten, Chryssa Kouveliotou and Alexander McEwen
{"title":"X-Ray Polarization of the Magnetar 1E 1841−045","authors":"Rachael Stewart, George A. Younes, Alice K. Harding, Zorawar Wadiasingh, Matthew G. Baring, Michela Negro, Tod E. Strohmayer, Wynn C. G. Ho, Mason Ng, Zaven Arzoumanian, Hoa Dinh Thi, Niccolò Di Lalla, Teruaki Enoto, Keith Gendreau, Chin-Ping Hu, Alex van Kooten, Chryssa Kouveliotou and Alexander McEwen","doi":"10.3847/2041-8213/adbffa","DOIUrl":null,"url":null,"abstract":"We report on IXPE and NuSTAR observations beginning 40 days after the 2024 outburst onset of magnetar 1E 1841−045, marking the first IXPE observation of a magnetar in an enhanced state. Our spectropolarimetric analysis indicates that both a blackbody (BB) plus double power-law (PL) and a double blackbody plus power-law spectral model fit the phase-averaged intensity data well, with a hard PL tail (Γ = 1.19 and 1.35, respectively) dominating above ≈5 keV. For the former model, we find the soft PL (the dominant component at soft energies) exhibits a polarization degree (PD) of ≈30% while the hard PL displays a PD of ≈40%. Similarly, the cool BB of the 2BB+PL model possesses a PD of ≈15% and a hard PL PD of ≈57%. For both models, each component has a polarization angle (PA) compatible with celestial north. Model-independent polarization analysis supports these results, wherein the PD increases from ≈15% to ≈70% in the 2–3 keV and 6–8 keV ranges, respectively, while the PA remains nearly constant. We find marginal evidence for phase-dependent variability of the polarization properties, namely a higher PD at phases coinciding with the hard X-ray pulse peak. We compare the hard X-ray PL to the expectation from resonant inverse Compton scattering (RICS) and secondary pair cascade synchrotron radiation from primary high-energy RICS photons; both present reasonable spectropolarimetric agreement with the data, albeit the latter does so more naturally. We suggest that the soft PL X-ray component may originate from a Comptonized corona in the inner magnetosphere.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adbffa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report on IXPE and NuSTAR observations beginning 40 days after the 2024 outburst onset of magnetar 1E 1841−045, marking the first IXPE observation of a magnetar in an enhanced state. Our spectropolarimetric analysis indicates that both a blackbody (BB) plus double power-law (PL) and a double blackbody plus power-law spectral model fit the phase-averaged intensity data well, with a hard PL tail (Γ = 1.19 and 1.35, respectively) dominating above ≈5 keV. For the former model, we find the soft PL (the dominant component at soft energies) exhibits a polarization degree (PD) of ≈30% while the hard PL displays a PD of ≈40%. Similarly, the cool BB of the 2BB+PL model possesses a PD of ≈15% and a hard PL PD of ≈57%. For both models, each component has a polarization angle (PA) compatible with celestial north. Model-independent polarization analysis supports these results, wherein the PD increases from ≈15% to ≈70% in the 2–3 keV and 6–8 keV ranges, respectively, while the PA remains nearly constant. We find marginal evidence for phase-dependent variability of the polarization properties, namely a higher PD at phases coinciding with the hard X-ray pulse peak. We compare the hard X-ray PL to the expectation from resonant inverse Compton scattering (RICS) and secondary pair cascade synchrotron radiation from primary high-energy RICS photons; both present reasonable spectropolarimetric agreement with the data, albeit the latter does so more naturally. We suggest that the soft PL X-ray component may originate from a Comptonized corona in the inner magnetosphere.