Distinguishing Between Thermal Coupling and Spin Interaction for Cr3+ NIR Luminescence Through Temperature‐Dependent Lifetime Analysis

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Shengqiang Liu, Zhen Song, Feng Wang, Quanlin Liu
{"title":"Distinguishing Between Thermal Coupling and Spin Interaction for Cr3+ NIR Luminescence Through Temperature‐Dependent Lifetime Analysis","authors":"Shengqiang Liu, Zhen Song, Feng Wang, Quanlin Liu","doi":"10.1002/lpor.202500568","DOIUrl":null,"url":null,"abstract":"Octahedrally coordinated Cr<jats:sup>3+</jats:sup> ions have been well‐documented for exceptional near‐infrared (NIR) luminescence properties, originating from intra‐configurational <jats:italic>d</jats:italic>‐<jats:italic>d</jats:italic> transition. While broadband emissions within intermediate crystal fields have been tentatively attributed to either thermally coupled excited states or Cr<jats:sup>3+</jats:sup>‐Cr<jats:sup>3+</jats:sup> spin interaction. A definitive delineation of the underlying mechanism governing these two luminescence behaviors remains contentious. In this study, this controversy based on the thermal evolution of decay lifetime in gallate garnet and magnetoplumbite lattices is resolved. The temperature‐dependent time decay rate within intermediated crystal fields is evaluated, employing a numerical simulation within a two‐level model framework. The results reveal that the broadband luminescence in Y<jats:sub>3</jats:sub>Ga<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub>:Cr<jats:sup>3+</jats:sup> stems from the thermal coupling of <jats:sup>2</jats:sup>E and <jats:sup>4</jats:sup>T<jats:sub>2</jats:sub> excited states, in which the thermal population of <jats:sup>4</jats:sup>T<jats:sub>2</jats:sub> state by the longer‐lived <jats:sup>2</jats:sup>E level resulted in a pseudo‐exponential decrease in the lifetime as a function of temperature. In contrast, these lifetimes of SrGa<jats:sub>12</jats:sub>O<jats:sub>19</jats:sub>:Cr<jats:sup>3+</jats:sup> and LaMgGa<jats:sub>11</jats:sub>O<jats:sub>19</jats:sub>:Cr<jats:sup>3+</jats:sup> exhibit a significantly slower decay rate with temperature, indicating the emergence of spin interaction, which is verified by calculating the spin interaction energy. Therefore, the works provide an easy‐handle analytical framework to distinguish the physical mechanism of Cr<jats:sup>3+</jats:sup> luminescence in intermediate crystal fields using temperature‐dependent lifetime analysis.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"7 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500568","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Octahedrally coordinated Cr3+ ions have been well‐documented for exceptional near‐infrared (NIR) luminescence properties, originating from intra‐configurational dd transition. While broadband emissions within intermediate crystal fields have been tentatively attributed to either thermally coupled excited states or Cr3+‐Cr3+ spin interaction. A definitive delineation of the underlying mechanism governing these two luminescence behaviors remains contentious. In this study, this controversy based on the thermal evolution of decay lifetime in gallate garnet and magnetoplumbite lattices is resolved. The temperature‐dependent time decay rate within intermediated crystal fields is evaluated, employing a numerical simulation within a two‐level model framework. The results reveal that the broadband luminescence in Y3Ga5O12:Cr3+ stems from the thermal coupling of 2E and 4T2 excited states, in which the thermal population of 4T2 state by the longer‐lived 2E level resulted in a pseudo‐exponential decrease in the lifetime as a function of temperature. In contrast, these lifetimes of SrGa12O19:Cr3+ and LaMgGa11O19:Cr3+ exhibit a significantly slower decay rate with temperature, indicating the emergence of spin interaction, which is verified by calculating the spin interaction energy. Therefore, the works provide an easy‐handle analytical framework to distinguish the physical mechanism of Cr3+ luminescence in intermediate crystal fields using temperature‐dependent lifetime analysis.
通过温度依赖寿命分析来区分Cr3+近红外发光的热耦合和自旋相互作用
八面体配位的Cr3+离子具有特殊的近红外(NIR)发光特性,这是由构型内d - d跃迁引起的。而中间晶体场中的宽带发射则暂时归因于热耦合激发态或Cr3+‐Cr3+自旋相互作用。对控制这两种发光行为的潜在机制的明确描述仍然存在争议。本研究解决了基于没食子石榴石和磁铅石晶格中衰变寿命热演化的争议。采用两级模型框架内的数值模拟,评估了中间晶体场中温度依赖的时间衰减率。结果表明,Y3Ga5O12:Cr3+的宽带发光源于2E和4T2激发态的热耦合,其中4T2态的热占比较长,导致寿命随温度呈伪指数下降。相比之下,SrGa12O19:Cr3+和LaMgGa11O19:Cr3+的寿命随温度的变化衰减速度明显较慢,表明存在自旋相互作用,这一点通过计算自旋相互作用能得到了验证。因此,这些工作提供了一个易于操作的分析框架,可以使用温度依赖寿命分析来区分中间晶体场中Cr3+发光的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信