Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1α/VEGF/VEGFR pathway

IF 6.3 1区 医学 Q1 DERMATOLOGY
Yunxia Chen, Wenjing Yin, Zhihui Liu, Guang Lu, Xiaorong Zhang, Jiacai Yang, Yong Huang, Xiaohong Hu, Cheng Chen, Ruoyu Shang, Wengang Hu, Jue Wang, Han-Ming Shen, Jun Hu, Gaoxing Luo, Weifeng He
{"title":"Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1α/VEGF/VEGFR pathway","authors":"Yunxia Chen, Wenjing Yin, Zhihui Liu, Guang Lu, Xiaorong Zhang, Jiacai Yang, Yong Huang, Xiaohong Hu, Cheng Chen, Ruoyu Shang, Wengang Hu, Jue Wang, Han-Ming Shen, Jun Hu, Gaoxing Luo, Weifeng He","doi":"10.1093/burnst/tkae071","DOIUrl":null,"url":null,"abstract":"Background Angiogenesis is vital for tissue repair but insufficient in chronic wounds due to paradoxical growth factor overexpression yet reduced neovascularization. Therapeutics physiologically promoting revascularization remain lacking. This study aims to investigate the molecular mechanisms underlying fibroblast-derived exosome-mediated angiogenesis during wound repair. Methods To assess the effects of fibroblasts derived exosomes on wound healing and angiogenesis, a full-thickness mouse skin injury model was established, followed by pharmacological inhibition of exosome secretion. The number and state of blood vessels in wounds were assessed by immunofluorescence, immunohistochemistry, hematoxylin–eosin staining, and laser Doppler imaging system. The high-throughput miRNA sequencing was carried out to detect the miRNA profiles of fibroblast-derived exosomes. The roles of candidate miRNAs, their target genes, and relevant pathways were predicted by bioinformatic online software. The knockdown and overexpression of candidate miRNAs, co-culture system, matrigel assay, pharmacological blockade, cell migration, EdU incorporation assay, and cell apoptosis were employed to investigate their contribution to angiogenesis mediated by fibroblast-derived exosomes. The expression of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), hypoxia-inducible factor 1α (HIF-1α), von Hippel–Lindau (VHL), and proline hydroxylases 2 was detected by western blot, co-immunoprecipitation, immunofluorescence, real-time quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. Furthermore, a full-thickness mouse skin injury model based on type I diabetes mellitus induced by streptozotocin was established for estimating the effect of fibroblast-derived exosomes on chronic wound healing. Results Pharmacological inhibition of exosome biogenesis markedly reduces neovascularization and delays murine cutaneous wound closure. Topical administration of fibroblast-secreted exosomes rescues these defects. Mechanistically, exosomal microRNA-24-3p suppresses VHL E3 ubiquitin ligase levels in endothelial cells to stabilize hypoxia-inducible factor-1α and heighten vascular endothelial growth factor signaling. MicroRNA-24-3p-deficient exosomes exhibit attenuated pro-angiogenic effects. Strikingly, topical application of exosomes derived from fibroblasts onto chronic wounds in diabetic mice improves neovascularization and healing dynamics. Conclusions Overall, we demonstrate central roles for exosomal miR-24-3p in stimulating endothelial HIF-VEGF signaling by inhibiting VHL-mediated degradation. The findings establish fibroblast-derived exosomes as promising acellular therapeutic candidates to treat vascular insufficiency underlying recalcitrant wounds.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"58 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkae071","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background Angiogenesis is vital for tissue repair but insufficient in chronic wounds due to paradoxical growth factor overexpression yet reduced neovascularization. Therapeutics physiologically promoting revascularization remain lacking. This study aims to investigate the molecular mechanisms underlying fibroblast-derived exosome-mediated angiogenesis during wound repair. Methods To assess the effects of fibroblasts derived exosomes on wound healing and angiogenesis, a full-thickness mouse skin injury model was established, followed by pharmacological inhibition of exosome secretion. The number and state of blood vessels in wounds were assessed by immunofluorescence, immunohistochemistry, hematoxylin–eosin staining, and laser Doppler imaging system. The high-throughput miRNA sequencing was carried out to detect the miRNA profiles of fibroblast-derived exosomes. The roles of candidate miRNAs, their target genes, and relevant pathways were predicted by bioinformatic online software. The knockdown and overexpression of candidate miRNAs, co-culture system, matrigel assay, pharmacological blockade, cell migration, EdU incorporation assay, and cell apoptosis were employed to investigate their contribution to angiogenesis mediated by fibroblast-derived exosomes. The expression of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), hypoxia-inducible factor 1α (HIF-1α), von Hippel–Lindau (VHL), and proline hydroxylases 2 was detected by western blot, co-immunoprecipitation, immunofluorescence, real-time quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. Furthermore, a full-thickness mouse skin injury model based on type I diabetes mellitus induced by streptozotocin was established for estimating the effect of fibroblast-derived exosomes on chronic wound healing. Results Pharmacological inhibition of exosome biogenesis markedly reduces neovascularization and delays murine cutaneous wound closure. Topical administration of fibroblast-secreted exosomes rescues these defects. Mechanistically, exosomal microRNA-24-3p suppresses VHL E3 ubiquitin ligase levels in endothelial cells to stabilize hypoxia-inducible factor-1α and heighten vascular endothelial growth factor signaling. MicroRNA-24-3p-deficient exosomes exhibit attenuated pro-angiogenic effects. Strikingly, topical application of exosomes derived from fibroblasts onto chronic wounds in diabetic mice improves neovascularization and healing dynamics. Conclusions Overall, we demonstrate central roles for exosomal miR-24-3p in stimulating endothelial HIF-VEGF signaling by inhibiting VHL-mediated degradation. The findings establish fibroblast-derived exosomes as promising acellular therapeutic candidates to treat vascular insufficiency underlying recalcitrant wounds.
来自成纤维细胞的外泌体通过调节HIF-1α/VEGF/VEGFR通路促进皮肤创面血管生成
血管生成对组织修复至关重要,但由于生长因子过度表达而新生血管减少,在慢性伤口中血管生成不足。生理上促进血运重建的治疗方法仍然缺乏。本研究旨在探讨成纤维细胞衍生的外泌体介导的血管生成在伤口修复过程中的分子机制。方法建立全层小鼠皮肤损伤模型,通过药物抑制外泌体的分泌,研究成纤维细胞源性外泌体对创面愈合和血管生成的影响。采用免疫荧光、免疫组织化学、苏木精-伊红染色和激光多普勒成像系统评估创面血管数量和状态。采用高通量miRNA测序检测成纤维细胞衍生外泌体的miRNA谱。通过生物信息学在线软件预测候选mirna及其靶基因和相关途径的作用。通过敲低和过表达候选mirna、共培养系统、matrigel实验、药物阻断、细胞迁移、EdU掺入实验和细胞凋亡来研究它们在成纤维细胞来源外泌体介导的血管生成中的作用。采用western blot、共免疫沉淀、免疫荧光、实时定量聚合酶链反应、流式细胞术、免疫组织化学检测血管内皮生长因子A (VEGFA)、血管内皮生长因子受体2 (VEGFR2)、缺氧诱导因子1α (HIF-1α)、von Hippel-Lindau (VHL)、脯氨酸羟化酶2的表达。此外,我们建立了链脲佐菌素诱导的1型糖尿病小鼠全层皮肤损伤模型,以评估成纤维细胞来源的外泌体对慢性伤口愈合的影响。结果药物抑制外泌体生物生成可显著减少新生血管形成,延缓小鼠皮肤创面愈合。局部使用成纤维细胞分泌的外泌体可以修复这些缺陷。机制上,外泌体microRNA-24-3p抑制内皮细胞VHL E3泛素连接酶水平,稳定缺氧诱导因子-1α,增强血管内皮生长因子信号。microrna -24-3p缺陷外泌体表现出减弱的促血管生成作用。引人注目的是,局部应用源自成纤维细胞的外泌体治疗糖尿病小鼠的慢性伤口可改善新生血管和愈合动力学。总的来说,我们证明了外泌体miR-24-3p通过抑制vhl介导的降解来刺激内皮HIF-VEGF信号传导的核心作用。研究结果表明,成纤维细胞来源的外泌体是治疗顽固性伤口血管功能不全的有希望的非细胞治疗候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信