Pengfei Wu, Qixuan Hu, Andrew V. Marquardt, Lawal A. Ogunfowora, Jeong Hui Kim, Yuanhao Tang, Chenjian Lin, Brett M. Savoie, Letian Dou
{"title":"Photoinduced bulk polymerization strategy in melt state for recyclable polydiene derivatives","authors":"Pengfei Wu, Qixuan Hu, Andrew V. Marquardt, Lawal A. Ogunfowora, Jeong Hui Kim, Yuanhao Tang, Chenjian Lin, Brett M. Savoie, Letian Dou","doi":"10.1038/s41557-025-01821-z","DOIUrl":null,"url":null,"abstract":"<p>Polydienes, particularly 1,3-butadiene derivatives, are integral to the chemical industry due to their widespread applications. However, current commercial production methods depend largely on gas- or solution-phase processes involving sophisticated initiators, catalysts and additives that require additional purification and cost. Here we introduce an ultraclean photo-melt-bulk polymerization strategy that enables the precise synthesis of high-molecular-weight polydienes without the need for solvents, catalysts or initiators. Using UV irradiation, we can generate long-lived biradicals in muconate derivatives that facilitate controlled chain propagation with minimal termination. This approach also simplifies the synthesis of ABA triblock co-polymers and allows for efficient random co-polymerization, yielding a plastic with excellent mechanical properties and processability. Furthermore, the inherently weaker carbon–carbon bonds in these polymers allow for facile depolymerization into monomers with high yields, providing an efficient pathway for chemical recycling. This work highlights a simple, yet effective polymerization method that aligns with the principles of green chemistry and advances the development of recyclable polymeric materials.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"10 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01821-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polydienes, particularly 1,3-butadiene derivatives, are integral to the chemical industry due to their widespread applications. However, current commercial production methods depend largely on gas- or solution-phase processes involving sophisticated initiators, catalysts and additives that require additional purification and cost. Here we introduce an ultraclean photo-melt-bulk polymerization strategy that enables the precise synthesis of high-molecular-weight polydienes without the need for solvents, catalysts or initiators. Using UV irradiation, we can generate long-lived biradicals in muconate derivatives that facilitate controlled chain propagation with minimal termination. This approach also simplifies the synthesis of ABA triblock co-polymers and allows for efficient random co-polymerization, yielding a plastic with excellent mechanical properties and processability. Furthermore, the inherently weaker carbon–carbon bonds in these polymers allow for facile depolymerization into monomers with high yields, providing an efficient pathway for chemical recycling. This work highlights a simple, yet effective polymerization method that aligns with the principles of green chemistry and advances the development of recyclable polymeric materials.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.