{"title":"Emerging nanomaterials capable of effectively facilitating osteoblast maturation.","authors":"Hoda Elkhenany","doi":"10.1080/17435889.2025.2511465","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient osteoblast maturation is essential for successful bone regeneration, yet achieving this goal remains challenging. This review explores the emerging role of nanomaterials in promoting osteoblast differentiation and bone formation. A literature search was conducted in the Web of Science Core Collection in February 2025, covering publications from 2014 to 2024 and limited to articles and proceedings. Keywords included \"nanoparticles\" and \"osteoblast.\" Among the most extensively studied nanomaterials were hydroxyapatite, carbon-based, and bioactive glass nanoparticles (NPs). These materials influence osteoblast function through intracellular mechanisms, including enhanced mitochondrial activity, autophagy, and osteoinductive gene expression. Additionally, they modulate the extracellular microenvironment by mimicking the native bone matrix, releasing bioactive ions, and reducing inflammation and oxidative stress. Notably, several NP-based systems have reached clinical application, including Signafuse (a bioactive calcium phosphate composite), nanoLOCK (a nanostructured titanium spinal implant), and Vitoss (a synthetic bone graft of nanocrystalline calcium phosphate). More recently, multimodal NPs that integrate different NP types and combine surface roughness, ion release, and chemical cues offer synergistic effects. These materials provide a dual-function approach, targeting both intracellular processes and the bone microenvironment. Their ability to modulate inflammation, oxidative stress, and cellular signaling underscores their translational potential in regenerative medicine and bone tissue engineering.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1603-1619"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2511465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient osteoblast maturation is essential for successful bone regeneration, yet achieving this goal remains challenging. This review explores the emerging role of nanomaterials in promoting osteoblast differentiation and bone formation. A literature search was conducted in the Web of Science Core Collection in February 2025, covering publications from 2014 to 2024 and limited to articles and proceedings. Keywords included "nanoparticles" and "osteoblast." Among the most extensively studied nanomaterials were hydroxyapatite, carbon-based, and bioactive glass nanoparticles (NPs). These materials influence osteoblast function through intracellular mechanisms, including enhanced mitochondrial activity, autophagy, and osteoinductive gene expression. Additionally, they modulate the extracellular microenvironment by mimicking the native bone matrix, releasing bioactive ions, and reducing inflammation and oxidative stress. Notably, several NP-based systems have reached clinical application, including Signafuse (a bioactive calcium phosphate composite), nanoLOCK (a nanostructured titanium spinal implant), and Vitoss (a synthetic bone graft of nanocrystalline calcium phosphate). More recently, multimodal NPs that integrate different NP types and combine surface roughness, ion release, and chemical cues offer synergistic effects. These materials provide a dual-function approach, targeting both intracellular processes and the bone microenvironment. Their ability to modulate inflammation, oxidative stress, and cellular signaling underscores their translational potential in regenerative medicine and bone tissue engineering.