A Nanoparticle-Based Immunoassay on Facemasks for Evaluating Neutrophilic Airway Inflammation in COPD Patients.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Bartomeu Mestre, Nuria Toledo-Pons, Andreu Vaquer, Sofia Tejada, Antonio Clemente, Amanda Iglesias, Meritxell López, Ruth Engonga, Sabina Perelló, Borja G Cosío, Roberto de la Rica
{"title":"A Nanoparticle-Based Immunoassay on Facemasks for Evaluating Neutrophilic Airway Inflammation in COPD Patients.","authors":"Bartomeu Mestre, Nuria Toledo-Pons, Andreu Vaquer, Sofia Tejada, Antonio Clemente, Amanda Iglesias, Meritxell López, Ruth Engonga, Sabina Perelló, Borja G Cosío, Roberto de la Rica","doi":"10.3390/bios15050323","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with chronic obstructive pulmonary disease (COPD) often experience acute exacerbations characterized by elevated neutrophilic inflammation in the lungs. Currently, this condition is diagnosed through visual inspection of sputum color and volume, a method prone to personal bias and unsuitable for patients who are unable to expectorate spontaneously. In this manuscript, we present a novel approach for measuring and monitoring exhaled myeloperoxidase (MPO), a biomarker of neutrophilic airway inflammation, without the need for sputum analysis. The method involves analyzing an unmodified surgical facemask worn by the patient for 30 min using biosensing decals that transfer antibody-coated nanoparticles. These colloids specifically interact with MPO trapped by the facemask in a dose-dependent manner, enabling the quantification of MPO levels, with a dynamic range up to 3 · 10<sup>1</sup> µg·mL<sup>-1</sup>. The proposed diagnostic approach successfully differentiated patients with acute exacerbations from stable patients with 100% sensitivity and specificity. Healthy individuals also showed significantly lower MPO levels compared to COPD patients. Our results suggest that facemask analysis could be a non-invasive diagnostic tool for airway diseases, particularly in patients unable to expectorate.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with chronic obstructive pulmonary disease (COPD) often experience acute exacerbations characterized by elevated neutrophilic inflammation in the lungs. Currently, this condition is diagnosed through visual inspection of sputum color and volume, a method prone to personal bias and unsuitable for patients who are unable to expectorate spontaneously. In this manuscript, we present a novel approach for measuring and monitoring exhaled myeloperoxidase (MPO), a biomarker of neutrophilic airway inflammation, without the need for sputum analysis. The method involves analyzing an unmodified surgical facemask worn by the patient for 30 min using biosensing decals that transfer antibody-coated nanoparticles. These colloids specifically interact with MPO trapped by the facemask in a dose-dependent manner, enabling the quantification of MPO levels, with a dynamic range up to 3 · 101 µg·mL-1. The proposed diagnostic approach successfully differentiated patients with acute exacerbations from stable patients with 100% sensitivity and specificity. Healthy individuals also showed significantly lower MPO levels compared to COPD patients. Our results suggest that facemask analysis could be a non-invasive diagnostic tool for airway diseases, particularly in patients unable to expectorate.

基于纳米颗粒的面罩免疫分析法评估慢性阻塞性肺病患者中性粒细胞气道炎症。
慢性阻塞性肺疾病(COPD)患者经常经历以肺部中性粒细胞炎症升高为特征的急性加重。目前,这种疾病的诊断是通过肉眼检查痰液的颜色和体积,这种方法容易存在个人偏见,不适合不能自发咳痰的患者。在这篇文章中,我们提出了一种新的方法来测量和监测呼出髓过氧化物酶(MPO),中性粒细胞气道炎症的生物标志物,而不需要进行痰分析。该方法包括使用转移抗体包被纳米颗粒的生物传感贴片分析患者佩戴30分钟的未经修改的外科口罩。这些胶体以剂量依赖的方式特异性地与面罩捕获的MPO相互作用,从而实现MPO水平的定量,动态范围可达3·101 μ g·mL-1。提出的诊断方法以100%的敏感性和特异性成功地将急性加重患者与稳定患者区分开来。与COPD患者相比,健康个体的MPO水平也显著降低。我们的研究结果表明,面罩分析可能是一种非侵入性的气道疾病诊断工具,特别是在无法咳痰的患者中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信