Current and Emerging Parenteral and Peroral Medications for Weight Loss: A Narrative Review.

IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Abdullah Al Lawati, Ayman Alhabsi, Rhieya Rahul, Maria-Luisa Savino, Hamed Alwahaibi, Srijit Das, Hanan Al Lawati
{"title":"Current and Emerging Parenteral and Peroral Medications for Weight Loss: A Narrative Review.","authors":"Abdullah Al Lawati, Ayman Alhabsi, Rhieya Rahul, Maria-Luisa Savino, Hamed Alwahaibi, Srijit Das, Hanan Al Lawati","doi":"10.3390/diseases13050129","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a growing global health challenge, necessitating effective treatment options beyond lifestyle interventions. This narrative review explores established and emerging pharmacotherapies for weight management, including parenteral agents like Liraglutide, Semaglutide, Setmelanotide, and Tirzepatide, as well as peroral medications such as Phentermine, Phentermine/Topiramate, Bupropion/Naltrexone, Orlistat, and Metformin. Newer treatments like Cagrilintide and Bimagrumab show promise for enhancing weight loss outcomes. Parenteral GLP-1 receptor agonists demonstrate superior efficacy compared to traditional peroral medications, with gastrointestinal side effects being the most common. Artificial intelligence presents intriguing opportunities to enhance weight loss strategies; however, its integration into clinical practice remains investigational and requires rigorous clinical validation. While current anti-obesity medications deliver significant benefits, future research must determine the efficacy, safety, and cost-effectiveness of AI-driven approaches. This includes exploring how AI can complement combination therapies and tailor personalized interventions, thereby grounding its potential benefits in robust clinical evidence. Future directions will focus on integrating AI into clinical trials to refine and personalize obesity management strategies.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13050129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a growing global health challenge, necessitating effective treatment options beyond lifestyle interventions. This narrative review explores established and emerging pharmacotherapies for weight management, including parenteral agents like Liraglutide, Semaglutide, Setmelanotide, and Tirzepatide, as well as peroral medications such as Phentermine, Phentermine/Topiramate, Bupropion/Naltrexone, Orlistat, and Metformin. Newer treatments like Cagrilintide and Bimagrumab show promise for enhancing weight loss outcomes. Parenteral GLP-1 receptor agonists demonstrate superior efficacy compared to traditional peroral medications, with gastrointestinal side effects being the most common. Artificial intelligence presents intriguing opportunities to enhance weight loss strategies; however, its integration into clinical practice remains investigational and requires rigorous clinical validation. While current anti-obesity medications deliver significant benefits, future research must determine the efficacy, safety, and cost-effectiveness of AI-driven approaches. This includes exploring how AI can complement combination therapies and tailor personalized interventions, thereby grounding its potential benefits in robust clinical evidence. Future directions will focus on integrating AI into clinical trials to refine and personalize obesity management strategies.

当前和新出现的肠外和口服药物减肥:叙述性回顾。
肥胖是一个日益严重的全球健康挑战,除了生活方式干预之外,还需要有效的治疗方案。这篇叙述性综述探讨了已建立的和新兴的体重管理药物治疗,包括利拉鲁肽、塞马鲁肽、塞美拉肽和替西帕肽等肠外药物,以及芬特明、芬特明/托吡酯、安非他酮/纳曲酮、奥利司他和二甲双胍等口服药物。较新的治疗方法,如Cagrilintide和Bimagrumab,有望提高减肥效果。与传统的口服药物相比,肠外GLP-1受体激动剂表现出优越的疗效,胃肠道副作用是最常见的。人工智能为增强减肥策略提供了有趣的机会;然而,将其纳入临床实践仍处于研究阶段,需要严格的临床验证。虽然目前的抗肥胖药物带来了显著的好处,但未来的研究必须确定人工智能驱动方法的有效性、安全性和成本效益。这包括探索人工智能如何补充联合疗法和定制个性化干预措施,从而将其潜在益处建立在强有力的临床证据之上。未来的方向将集中在将人工智能整合到临床试验中,以完善和个性化肥胖管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信