Wei Jiao, Nan Zeng, Rui Hao, Hui Ma, Chao He, Honghui He
{"title":"Probing the Influence of Specular Reflection and Overexposure on Backscattering Mueller Matrix Polarimetry for Tissue Imaging and Sensing.","authors":"Wei Jiao, Nan Zeng, Rui Hao, Hui Ma, Chao He, Honghui He","doi":"10.3390/bios15050333","DOIUrl":null,"url":null,"abstract":"<p><p>Mueller matrix polarimetry has great potential for tissue detection and clinical diagnosis due to its ability to provide rich microstructural information accurately. However, in practical in vivo tissue imaging based on backscattering Mueller matrix polarimetry, specular reflection is often inevitable, leading to overexposed regions and the following inaccurate polarization information acquisition of tissues. In this study, we probe the influence of specular reflection and overexposure on backscattering Mueller matrix polarimetry for tissue imaging and sensing. We investigate in detail the differentiation of polarization behaviors between the specular reflection and non-specular reflection tissue regions using a 3 × 3 backscattering Mueller matrix measurement. Then, we obtain the vertical projection profiles to further quantify the Mueller matrix elements of porcine liver tissue in different specular reflection regions. Finally, we calculate the polarization feature parameters derived from a 3 × 3 Mueller matrix and analyze their behavior in overexposed regions. Based on the quantitative analysis and comparisons, we obtain a group of polarization feature parameters with strong immunity to the specular reflection process. This study offers a strategy for selecting the polarization parameters during in vivo polarimetric imaging applications, provides valuable references for further eliminating the characterization errors induced by specular reflection, and may contribute to the advancement of quantitative tissue polarimetric imaging and sensing.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050333","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mueller matrix polarimetry has great potential for tissue detection and clinical diagnosis due to its ability to provide rich microstructural information accurately. However, in practical in vivo tissue imaging based on backscattering Mueller matrix polarimetry, specular reflection is often inevitable, leading to overexposed regions and the following inaccurate polarization information acquisition of tissues. In this study, we probe the influence of specular reflection and overexposure on backscattering Mueller matrix polarimetry for tissue imaging and sensing. We investigate in detail the differentiation of polarization behaviors between the specular reflection and non-specular reflection tissue regions using a 3 × 3 backscattering Mueller matrix measurement. Then, we obtain the vertical projection profiles to further quantify the Mueller matrix elements of porcine liver tissue in different specular reflection regions. Finally, we calculate the polarization feature parameters derived from a 3 × 3 Mueller matrix and analyze their behavior in overexposed regions. Based on the quantitative analysis and comparisons, we obtain a group of polarization feature parameters with strong immunity to the specular reflection process. This study offers a strategy for selecting the polarization parameters during in vivo polarimetric imaging applications, provides valuable references for further eliminating the characterization errors induced by specular reflection, and may contribute to the advancement of quantitative tissue polarimetric imaging and sensing.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.