{"title":"Molecularly Imprinted SERS Plasmonic Sensor for the Detection of Malachite Green.","authors":"Hao Zhang, Dani Sun, Yuhao Wen, Mengyuan Wang, Jingying Huang, Ziru Lian, Jinhua Li","doi":"10.3390/bios15050329","DOIUrl":null,"url":null,"abstract":"<p><p>Malachite green (MG) is a highly toxic dye commonly used in industries and aquaculture, leading to significant environmental contamination and health hazards. Therefore, sensitive and selective detection of MG in real samples is urgently needed. This study presents the development of a molecularly imprinted surface-enhanced Raman spectroscopy (MI-SERS) plasmonic sensor for the rapid and sensitive detection of MG. The sensor consists of a gold nanostar (Au NS) layer as the SERS substrate and an imprinted polydopamine layer containing specific recognition sites for MG. Taking full advantage of the plasmonic effect of SERS and selective recognition capability of imprinted materials, under optimized conditions, the sensor demonstrated high sensitivity, with a detection limit of 3.5 × 10<sup>-3</sup> mg/L, excellent selectivity against interference from other organic dyes, and robust performance with recoveries of 90.2-114.2% in real seawater samples. The MI-SERS sensor also exhibited good reproducibility, stability, and reusability. These findings suggest that the MI-SERS sensor is a promising tool for real-time monitoring of MG contamination in complicated samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050329","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Malachite green (MG) is a highly toxic dye commonly used in industries and aquaculture, leading to significant environmental contamination and health hazards. Therefore, sensitive and selective detection of MG in real samples is urgently needed. This study presents the development of a molecularly imprinted surface-enhanced Raman spectroscopy (MI-SERS) plasmonic sensor for the rapid and sensitive detection of MG. The sensor consists of a gold nanostar (Au NS) layer as the SERS substrate and an imprinted polydopamine layer containing specific recognition sites for MG. Taking full advantage of the plasmonic effect of SERS and selective recognition capability of imprinted materials, under optimized conditions, the sensor demonstrated high sensitivity, with a detection limit of 3.5 × 10-3 mg/L, excellent selectivity against interference from other organic dyes, and robust performance with recoveries of 90.2-114.2% in real seawater samples. The MI-SERS sensor also exhibited good reproducibility, stability, and reusability. These findings suggest that the MI-SERS sensor is a promising tool for real-time monitoring of MG contamination in complicated samples.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.