Individually Modified Microneedle Array for Minimal Invasive Multi-Electrolyte Monitoring.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Ketian Yu, Yukun Ma, Yiming Wei, Wanying Chen, Zhen Dai, Yu Cai, Xuesong Ye, Bo Liang
{"title":"Individually Modified Microneedle Array for Minimal Invasive Multi-Electrolyte Monitoring.","authors":"Ketian Yu, Yukun Ma, Yiming Wei, Wanying Chen, Zhen Dai, Yu Cai, Xuesong Ye, Bo Liang","doi":"10.3390/bios15050310","DOIUrl":null,"url":null,"abstract":"<p><p>Electrolytes play crucial roles in regulating nerve and muscle functions. Currently, microneedle technology enables real-time electrolyte monitoring through minimally invasive methods. However, due to the small size of microneedles, performing multi-layer modifications on individual microneedles and ensuring the integrity of these layers pose significant challenges. Additionally, the puncture efficiency of the electrodes will be affected by the structure of microneedle array integration. To address these issues, we primarily focus on developing a multi-parameter ion monitoring system based on microneedle arrays. By optimizing the surface reconstruction of electrode substrates, the adhesion between the electrode surface and the modification layer was improved, enhancing the stability of the electrodes. Potassium, sodium, and calcium ion-selective electrodes based on microneedles were fabricated, demonstrating good sensitivity and linearity. To tackle the puncture efficiency of microneedle arrays, finite element simulation was employed to investigate the mechanical properties of different structural designs of microneedle arrays during skin insertion. Ultimately, an integrated microneedle array was designed and assembled, and a multi-parameter ion monitoring system was developed, validated through in vitro simulations and in vivo animal experiments. This research provides valuable insights into the development and advancement of minimally invasive, multi-parameter dynamic monitoring technologies in clinical settings.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 5","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15050310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytes play crucial roles in regulating nerve and muscle functions. Currently, microneedle technology enables real-time electrolyte monitoring through minimally invasive methods. However, due to the small size of microneedles, performing multi-layer modifications on individual microneedles and ensuring the integrity of these layers pose significant challenges. Additionally, the puncture efficiency of the electrodes will be affected by the structure of microneedle array integration. To address these issues, we primarily focus on developing a multi-parameter ion monitoring system based on microneedle arrays. By optimizing the surface reconstruction of electrode substrates, the adhesion between the electrode surface and the modification layer was improved, enhancing the stability of the electrodes. Potassium, sodium, and calcium ion-selective electrodes based on microneedles were fabricated, demonstrating good sensitivity and linearity. To tackle the puncture efficiency of microneedle arrays, finite element simulation was employed to investigate the mechanical properties of different structural designs of microneedle arrays during skin insertion. Ultimately, an integrated microneedle array was designed and assembled, and a multi-parameter ion monitoring system was developed, validated through in vitro simulations and in vivo animal experiments. This research provides valuable insights into the development and advancement of minimally invasive, multi-parameter dynamic monitoring technologies in clinical settings.

用于微创多电解质监测的单独改进微针阵列。
电解质在调节神经和肌肉功能方面起着至关重要的作用。目前,微针技术通过微创方法实现了电解质的实时监测。然而,由于微针的尺寸较小,在单个微针上进行多层修饰并确保这些层的完整性构成了重大挑战。此外,微针阵列集成的结构也会影响电极的穿刺效率。为了解决这些问题,我们主要致力于开发一种基于微针阵列的多参数离子监测系统。通过优化电极基板的表面重构,改善了电极表面与修饰层之间的附着力,增强了电极的稳定性。制备了基于微针的钾、钠、钙离子选择性电极,具有良好的灵敏度和线性。为了解决微针阵列的穿刺效率问题,采用有限元模拟方法研究了不同结构设计的微针阵列在植皮过程中的力学性能。最后,设计并组装了一个集成的微针阵列,开发了一个多参数离子监测系统,并通过体外模拟和体内动物实验进行了验证。本研究为临床环境中微创、多参数动态监测技术的发展和进步提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信