{"title":"Utilizing Molecular Descriptor Importance to Enhance Endpoint Predictions.","authors":"Benjamin Bajželj, Marjana Novič, Viktor Drgan","doi":"10.3390/toxics13050383","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative structure-activity relationship (QSAR) models are essential for predicting endpoints that are otherwise challenging to estimate using other in silico approaches. Developing interpretable models for endpoint prediction is valuable as interpretable models may provide valuable insights into the relationship between molecular structure and observed biological or toxicological properties of compounds. In this study, we introduce a novel modification of counter-propagation artificial neural networks that aims to identify key molecular features responsible for classifying molecules into specific endpoint classes. The novel approach presented in this work dynamically adjusts molecular descriptor importance during model training, allowing different molecular descriptor importance values for structurally different molecules, which increases its adaptability to diverse sets of compounds. We applied the method to enzyme inhibition and hepatotoxicity classification datasets. Our findings show that the proposed approach improves the classification of molecules, reduces the number of neurons excited by molecules from different endpoint classes, and increases the number of acceptable models. The proposed approach may be useful in compound toxicity prediction and drug design studies.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13050383","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative structure-activity relationship (QSAR) models are essential for predicting endpoints that are otherwise challenging to estimate using other in silico approaches. Developing interpretable models for endpoint prediction is valuable as interpretable models may provide valuable insights into the relationship between molecular structure and observed biological or toxicological properties of compounds. In this study, we introduce a novel modification of counter-propagation artificial neural networks that aims to identify key molecular features responsible for classifying molecules into specific endpoint classes. The novel approach presented in this work dynamically adjusts molecular descriptor importance during model training, allowing different molecular descriptor importance values for structurally different molecules, which increases its adaptability to diverse sets of compounds. We applied the method to enzyme inhibition and hepatotoxicity classification datasets. Our findings show that the proposed approach improves the classification of molecules, reduces the number of neurons excited by molecules from different endpoint classes, and increases the number of acceptable models. The proposed approach may be useful in compound toxicity prediction and drug design studies.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.