Xianliang Ke , Xian Lin , Jin Wang , Minqi Chen , Xiaoqin Jian , Chang Ye , Quanjiao Chen
{"title":"Compromised efferocytosis during aging is related to COVID-19 severity in mice","authors":"Xianliang Ke , Xian Lin , Jin Wang , Minqi Chen , Xiaoqin Jian , Chang Ye , Quanjiao Chen","doi":"10.1016/j.virs.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is one of the greatest risk factors for morbidity caused by the coronavirus disease 2019 (COVID-19). In older individuals, a dysregulated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection contributes to disease severity; however, the underlying mechanism remains elusive. In this study, we established an aging mouse model of COVID-19, successfully replicating the development of a relatively severe disease in older adults. Further single-cell transcriptome analysis revealed a distinct immune cell landscape in the infected lungs, accompanied by an over-activated inflammatory response, especially in aging mice. Compared to young mice, aging mice showed extensive neutrophil activation, NETosis, and a dramatic decrease in the number of alveolar macrophages (AMs). Moreover, as important executors of efferocytosis, AMs exhibited a low efferocytotic gene signature and downregulation of multiple efferocytosis receptors in aged mice. Further analysis indicated that the efferocytosis of neutrophils, whether undergoing apoptosis or NETosis, was compromised after SARS-CoV-2 infection. Since efferocytosis is a key process in inflammatory resolution, impaired efferocytosis may contribute to hyperinflammation in aging lungs. Our study reveals the characteristics and role of efferocytosis in aging mice after SARS-CoV-2 infection and provides valuable insights for the potential treatment of COVID-19.</div></div>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":"40 3","pages":"Pages 419-429"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995820X25000665","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is one of the greatest risk factors for morbidity caused by the coronavirus disease 2019 (COVID-19). In older individuals, a dysregulated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection contributes to disease severity; however, the underlying mechanism remains elusive. In this study, we established an aging mouse model of COVID-19, successfully replicating the development of a relatively severe disease in older adults. Further single-cell transcriptome analysis revealed a distinct immune cell landscape in the infected lungs, accompanied by an over-activated inflammatory response, especially in aging mice. Compared to young mice, aging mice showed extensive neutrophil activation, NETosis, and a dramatic decrease in the number of alveolar macrophages (AMs). Moreover, as important executors of efferocytosis, AMs exhibited a low efferocytotic gene signature and downregulation of multiple efferocytosis receptors in aged mice. Further analysis indicated that the efferocytosis of neutrophils, whether undergoing apoptosis or NETosis, was compromised after SARS-CoV-2 infection. Since efferocytosis is a key process in inflammatory resolution, impaired efferocytosis may contribute to hyperinflammation in aging lungs. Our study reveals the characteristics and role of efferocytosis in aging mice after SARS-CoV-2 infection and provides valuable insights for the potential treatment of COVID-19.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769