Subcellular Partitioning of Trace Elements Is Related to Metal Ecotoxicological Classes in Livers of Fish (Esox lucius; Coregonus clupeaformis) from the Yellowknife Area (Northwest Territories, Canada).
Aymeric Rolland, Mike Palmer, John Chételat, Marc Amyot, Maikel Rosabal
{"title":"Subcellular Partitioning of Trace Elements Is Related to Metal Ecotoxicological Classes in Livers of Fish (<i>Esox lucius; Coregonus clupeaformis</i>) from the Yellowknife Area (Northwest Territories, Canada).","authors":"Aymeric Rolland, Mike Palmer, John Chételat, Marc Amyot, Maikel Rosabal","doi":"10.3390/toxics13050410","DOIUrl":null,"url":null,"abstract":"<p><p>The subcellular partitioning of trace elements (TEs) may depend on their binding preferences, although few field data are available from mining-impacted areas. Northern pike and lake whitefish were collected from different aquatic systems located in the Yellowknife mining area (Northwest Territories, Canada) to examine the subcellular partitioning of TEs in liver cells. Elements belonging to metal classes based on binding affinities were considered: A (Ce, La), borderline (As, Pb), and class B (Ag, Cd). Measurements in the metal-detoxified fractions (granule-like structures and heat-stable proteins and peptides) and in the putative metal-sensitive fractions (heat-denatured proteins, mitochondria and microsomes, and lysosomes) revealed marked differences among metal classes. In both fish species, Cd and Ag accumulated more as detoxified forms (higher than 50%, likely bound to metallothionein-like proteins) than La and Ce (not more than 20%). The two borderline TEs (As and Pb) showed an intermediate behavior between classes A and B. Similar proportions were found in the \"sensitive\" subcellular fractions for all TEs, where quantitative ion character-activity relationships (QICARs) indicated the covalent index and electronegativity as predictors of the TE contribution in this compartment. This study supports the use of classes of metals to predict the toxicological risk of data-poor metals in mining areas.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13050410","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The subcellular partitioning of trace elements (TEs) may depend on their binding preferences, although few field data are available from mining-impacted areas. Northern pike and lake whitefish were collected from different aquatic systems located in the Yellowknife mining area (Northwest Territories, Canada) to examine the subcellular partitioning of TEs in liver cells. Elements belonging to metal classes based on binding affinities were considered: A (Ce, La), borderline (As, Pb), and class B (Ag, Cd). Measurements in the metal-detoxified fractions (granule-like structures and heat-stable proteins and peptides) and in the putative metal-sensitive fractions (heat-denatured proteins, mitochondria and microsomes, and lysosomes) revealed marked differences among metal classes. In both fish species, Cd and Ag accumulated more as detoxified forms (higher than 50%, likely bound to metallothionein-like proteins) than La and Ce (not more than 20%). The two borderline TEs (As and Pb) showed an intermediate behavior between classes A and B. Similar proportions were found in the "sensitive" subcellular fractions for all TEs, where quantitative ion character-activity relationships (QICARs) indicated the covalent index and electronegativity as predictors of the TE contribution in this compartment. This study supports the use of classes of metals to predict the toxicological risk of data-poor metals in mining areas.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.