{"title":"Laminin Receptors in the CNS and Vasculature.","authors":"Yao Yao","doi":"10.1161/STROKEAHA.125.051560","DOIUrl":null,"url":null,"abstract":"<p><p>Laminin exerts a variety of important functions via binding to its receptors, including integrins and dystroglycan. With the advance in gene-targeting technology, many integrin/dystroglycan knockout/mutant mice were generated in the past 3 decades. These mutants enable loss-of-function studies and have substantially enriched our knowledge of integrin/dystroglycan functions. In this review, we summarize the functions of laminin receptors during embryonic development and in the CNS and vasculature. First, the biochemical properties of integrins and dystroglycan are briefly introduced. Next, we discuss loss-of-function studies on laminin receptors, including integrin-α3, integrin-α6, integrin-α7, integrin-β1, integrin-β4, and dystroglycan, focusing on embryonic development, the CNS, and vasculature. The phenotypes of compound knockout mice are described and compared with that of single mutants. Last, important questions and challenges in the field as well as potential future directions are discussed. Our goal is to provide a synthetic review on loss-of-function studies of laminin receptors in the CNS and vasculature, which could serve as a reference for future research, encourage the formation of new hypotheses, and stimulate new research in this field.</p>","PeriodicalId":21989,"journal":{"name":"Stroke","volume":" ","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/STROKEAHA.125.051560","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laminin exerts a variety of important functions via binding to its receptors, including integrins and dystroglycan. With the advance in gene-targeting technology, many integrin/dystroglycan knockout/mutant mice were generated in the past 3 decades. These mutants enable loss-of-function studies and have substantially enriched our knowledge of integrin/dystroglycan functions. In this review, we summarize the functions of laminin receptors during embryonic development and in the CNS and vasculature. First, the biochemical properties of integrins and dystroglycan are briefly introduced. Next, we discuss loss-of-function studies on laminin receptors, including integrin-α3, integrin-α6, integrin-α7, integrin-β1, integrin-β4, and dystroglycan, focusing on embryonic development, the CNS, and vasculature. The phenotypes of compound knockout mice are described and compared with that of single mutants. Last, important questions and challenges in the field as well as potential future directions are discussed. Our goal is to provide a synthetic review on loss-of-function studies of laminin receptors in the CNS and vasculature, which could serve as a reference for future research, encourage the formation of new hypotheses, and stimulate new research in this field.
期刊介绍:
Stroke is a monthly publication that collates reports of clinical and basic investigation of any aspect of the cerebral circulation and its diseases. The publication covers a wide range of disciplines including anesthesiology, critical care medicine, epidemiology, internal medicine, neurology, neuro-ophthalmology, neuropathology, neuropsychology, neurosurgery, nuclear medicine, nursing, radiology, rehabilitation, speech pathology, vascular physiology, and vascular surgery.
The audience of Stroke includes neurologists, basic scientists, cardiologists, vascular surgeons, internists, interventionalists, neurosurgeons, nurses, and physiatrists.
Stroke is indexed in Biological Abstracts, BIOSIS, CAB Abstracts, Chemical Abstracts, CINAHL, Current Contents, Embase, MEDLINE, and Science Citation Index Expanded.