Eco-Friendly Synthesis of Zirconia Nanoparticles Using Sonchus asper Extract: A Sustainable Approach to Enhancing Chinese Cabbage Growth and Remediating Chromium-Contaminated Soil.
{"title":"Eco-Friendly Synthesis of Zirconia Nanoparticles Using <i>Sonchus asper</i> Extract: A Sustainable Approach to Enhancing Chinese Cabbage Growth and Remediating Chromium-Contaminated Soil.","authors":"Guojie Weng, Weidong Li, Fengyue Qin, Menglu Dong, Shuangqi Yue, Sajid Mehmood, Xu Wang","doi":"10.3390/toxics13050324","DOIUrl":null,"url":null,"abstract":"<p><p>Chromium (Cr) contamination poses severe risks to plant health and soil quality, requiring sustainable remediation methods. This study explored the synthesis of zirconia nanoparticles (PF-ZrO<sub>2</sub> NPs) from <i>Sonchus asper</i> extract and assessed their potential to alleviate Cr toxicity in Chinese cabbage (<i>Brassica rapa</i> var. pekinensis). The characterization of nanoparticles was performed through XRD, SEM, and FTIR analyses, confirming their crystalline nature, structure, and surface chemistry. The results indicated significant declines in plant growth, chlorophyll content, biomass, and nutrient uptake under Cr stress (treatments T2 and T4), accompanied by elevated oxidative stress indicators (H<sub>2</sub>O<sub>2</sub>, MDA) and Cr accumulation. The application of PF-ZrO<sub>2</sub> NPs (T3 and T5) notably reduced shoot Cr concentrations (by 58.94% and 35.90%) and improved the chlorophyll level (by 5.41% and 14.41%). Additionally, nanoparticles increased antioxidant enzyme activity (SOD, POD, CAT) and improved soil properties (pH, cation exchange capacity, nutrient retention). These findings suggest green-synthesized PF-ZrO<sub>2</sub> NPs are effective, environmentally friendly candidates for Cr remediation in contaminated soils.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13050324","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chromium (Cr) contamination poses severe risks to plant health and soil quality, requiring sustainable remediation methods. This study explored the synthesis of zirconia nanoparticles (PF-ZrO2 NPs) from Sonchus asper extract and assessed their potential to alleviate Cr toxicity in Chinese cabbage (Brassica rapa var. pekinensis). The characterization of nanoparticles was performed through XRD, SEM, and FTIR analyses, confirming their crystalline nature, structure, and surface chemistry. The results indicated significant declines in plant growth, chlorophyll content, biomass, and nutrient uptake under Cr stress (treatments T2 and T4), accompanied by elevated oxidative stress indicators (H2O2, MDA) and Cr accumulation. The application of PF-ZrO2 NPs (T3 and T5) notably reduced shoot Cr concentrations (by 58.94% and 35.90%) and improved the chlorophyll level (by 5.41% and 14.41%). Additionally, nanoparticles increased antioxidant enzyme activity (SOD, POD, CAT) and improved soil properties (pH, cation exchange capacity, nutrient retention). These findings suggest green-synthesized PF-ZrO2 NPs are effective, environmentally friendly candidates for Cr remediation in contaminated soils.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.