Alba López-Palacios, Ángela Morellá-Aucejo, Yolanda Moreno, Román Ponz-Carcelén, María Pedro-Monzonís, M Dolores Marcos, Andrea Bernardos, Félix Sancenón, Elena Aznar, Ramón Martínez-Máñez, Andy Hernández-Montoto
{"title":"Gated Nanosensor for Sulphate-Reducing Bacteria Detection.","authors":"Alba López-Palacios, Ángela Morellá-Aucejo, Yolanda Moreno, Román Ponz-Carcelén, María Pedro-Monzonís, M Dolores Marcos, Andrea Bernardos, Félix Sancenón, Elena Aznar, Ramón Martínez-Máñez, Andy Hernández-Montoto","doi":"10.3390/nano15100774","DOIUrl":null,"url":null,"abstract":"<p><p><i>Desulfovibrio vulgaris</i> is an anaerobic microorganism belonging to the group of sulphate-reducing bacteria (SRB). SRB form biofilms on metal surfaces in water supply networks, producing a microbiologically influenced corrosion (MIC). This process produces the deterioration of metal surfaces, leading to high economic costs and different environmental safety and health problems related to its chemical treatment. For that reason, rapid and accurate detection methods of SRB are needed. In this work, a new detection system for <i>Desulfovibrio</i> has been developed using gated nanoporous materials. The probe is based on hybrid nanoporous alumina films encapsulating a fluorescent molecule (rhodamine B), whose release is controlled by an oligonucleotide gate. Upon exposure to <i>Desulfovibrio</i>'s genomic material, a movement of the oligonucleotide gatekeeper happens, resulting in the selective delivery of the entrapped rhodamine B. The developed material shows high selectivity and sensitivity for detecting <i>Desulfovibrio</i> DNA in aqueous buffer and biological media. The implementation of this technology for the detection of <i>Desulfovibrio</i> as a tool for monitoring water supply networks is innovative and allows real-time in situ monitoring, making it possible to detect the growth of <i>Desulfovibrio</i> inside of pipes at an early stage and perform timely interventions to reverse it.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15100774","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Desulfovibrio vulgaris is an anaerobic microorganism belonging to the group of sulphate-reducing bacteria (SRB). SRB form biofilms on metal surfaces in water supply networks, producing a microbiologically influenced corrosion (MIC). This process produces the deterioration of metal surfaces, leading to high economic costs and different environmental safety and health problems related to its chemical treatment. For that reason, rapid and accurate detection methods of SRB are needed. In this work, a new detection system for Desulfovibrio has been developed using gated nanoporous materials. The probe is based on hybrid nanoporous alumina films encapsulating a fluorescent molecule (rhodamine B), whose release is controlled by an oligonucleotide gate. Upon exposure to Desulfovibrio's genomic material, a movement of the oligonucleotide gatekeeper happens, resulting in the selective delivery of the entrapped rhodamine B. The developed material shows high selectivity and sensitivity for detecting Desulfovibrio DNA in aqueous buffer and biological media. The implementation of this technology for the detection of Desulfovibrio as a tool for monitoring water supply networks is innovative and allows real-time in situ monitoring, making it possible to detect the growth of Desulfovibrio inside of pipes at an early stage and perform timely interventions to reverse it.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.