Convex Regular Polychora Nanocrystals with Dipole-Dipole Interactions.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-05-21 DOI:10.3390/nano15100771
Orion Ciftja, Josep Batle, Mohamed Ahmed Hafez
{"title":"Convex Regular Polychora Nanocrystals with Dipole-Dipole Interactions.","authors":"Orion Ciftja, Josep Batle, Mohamed Ahmed Hafez","doi":"10.3390/nano15100771","DOIUrl":null,"url":null,"abstract":"<p><p>Structures composed of classical dipoles in higher-dimensional space present a unique opportunity to venture beyond the conventional paradigm of few-body or cluster physics. In this work, we consider the six convex regular polychora that exist in an Euclidean four-dimensional space as a theoretical benchmark for hte investigation of dipolar systems in higher dimensions. The structures under consideration represent the four-dimensional counterparts of the well-known Platonic solids in three-dimensions. A dipole is placed in each vertex of the structure and is allowed to interact with the rest of the system via the usual dipole-dipole interaction generalized to the higher dimension. We use numerical tools to minimize the total interaction energy of the systems and observe that all six structures represent dipole clusters with a zero net dipole moment. The minimum energy is achieved for dipoles arranging themselves with orientations whose angles are commensurate or irrational fractions of the number π.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15100771","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structures composed of classical dipoles in higher-dimensional space present a unique opportunity to venture beyond the conventional paradigm of few-body or cluster physics. In this work, we consider the six convex regular polychora that exist in an Euclidean four-dimensional space as a theoretical benchmark for hte investigation of dipolar systems in higher dimensions. The structures under consideration represent the four-dimensional counterparts of the well-known Platonic solids in three-dimensions. A dipole is placed in each vertex of the structure and is allowed to interact with the rest of the system via the usual dipole-dipole interaction generalized to the higher dimension. We use numerical tools to minimize the total interaction energy of the systems and observe that all six structures represent dipole clusters with a zero net dipole moment. The minimum energy is achieved for dipoles arranging themselves with orientations whose angles are commensurate or irrational fractions of the number π.

具有偶极-偶极相互作用的凸规则多聚纳米晶体。
高维空间中由经典偶极子组成的结构提供了一个独特的机会,可以超越传统的少体或簇物理范式。在这项工作中,我们考虑存在于欧几里得四维空间中的六个凸正则多聚线作为研究高维偶极系统的理论基准。所考虑的结构代表了众所周知的柏拉图立体在三维中的四维对应物。偶极子被放置在结构的每个顶点,并允许通过通常的偶极子-偶极子相互作用推广到更高的维度与系统的其余部分相互作用。我们使用数值工具来最小化系统的总相互作用能,并观察到所有六个结构都代表具有零净偶极矩的偶极子团簇。当偶极子以与数π相称或为无理数的分数的方向排列时,能量最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信