{"title":"Advancing Climate-Resilient Sorghum: the Synergistic Role of Plant Biotechnology and Microbial Interactions.","authors":"Atul Kumar Srivastava, Aamir Riaz, Junmei Jiang, Xiangyang Li, Mohammad Uzair, Pooja Mishra, Aqib Zeb, Jiwei Zhang, Raghvendra Pratap Singh, Lingfeng Luo, Songshu Chen, Sanwei Yang, Yudan Zhao, Xin Xie","doi":"10.1186/s12284-025-00796-2","DOIUrl":null,"url":null,"abstract":"<p><p>Climate-related problems such as drought stress, extreme temperature, erratic rainfall patterns, soil degradation, heatwaves, flooding, water logging, pests and diseases afflict the production and sustainability of sorghum. These challenges may be addressed by adopting climate-resilient practices and using advanced agronomic techniques. These challenges are being addressed through innovative applications of plant biotechnology and microbiology, which offer targeted solutions to enhance sorghum's resilience. For instance, biotechnological tools like CRISPR/Cas9 enable precise genetic modifications to improve drought and heat tolerance, while microbial inoculants, such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF), enhance nutrient uptake and stress tolerance through symbiotic interactions. However, biotechnological tools lead to the development of sorghum varieties with heat, drought and salinity tolerance, while marker-assisted selection significantly accelerates breeding for stress-resilient traits. When genetic engineering is introduced, genes encoding heat shock proteins, Osmo protectants and antioxidant pathways are introduced to increase plant resistance to abiotic stress. These compounds stabilise cellular structures, protect enzymes, and maintain osmotic balance, enhancing the plant's ability to survive and function in adverse environmental conditions. At the same time, it is reported that microbiology offers beneficial microbes, nitrogen-fixing bacteria, phosphate-solubilizing microorganisms, and arbuscular mycorrhizal fungi that help enhance nutrient availability, soil health and water uptake. Combinations of endophytes and microbial inoculants enhance plant immunity to pests and diseases while increasing tolerance to stress. Biocontrol agents such as Bacillus and Trichoderma contain suppression of pathogens and need less dependence on the use of chemical pesticides. On top of that, genetic modification increases the nutritional quality of sorghum biofortified. This is where biotechnology and microbiology work together to deliver sustainable farming systems reducing environmental impacts, boosting yields and securing food supply under environmental stresses. This review aims to examine the synergistic integration of plant biotechnology and microbial interactions as a strategy to enhance sorghum's resilience to climate-induced stresses, including drought, elevated temperatures, and nutrient-deficient soils. It highlights recent advancements in biotechnological tools such as gene editing, marker-assisted selection, and tissue culture, alongside the emerging role of plant-beneficial microbes in promoting stress tolerance and improving soil health. By synthesizing current knowledge across these disciplines, this review seeks to outline a framework for future research that harnesses the intersection of biotechnology and microbial ecology to support the sustainable improvement of sorghum resilience.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"41"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00796-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate-related problems such as drought stress, extreme temperature, erratic rainfall patterns, soil degradation, heatwaves, flooding, water logging, pests and diseases afflict the production and sustainability of sorghum. These challenges may be addressed by adopting climate-resilient practices and using advanced agronomic techniques. These challenges are being addressed through innovative applications of plant biotechnology and microbiology, which offer targeted solutions to enhance sorghum's resilience. For instance, biotechnological tools like CRISPR/Cas9 enable precise genetic modifications to improve drought and heat tolerance, while microbial inoculants, such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF), enhance nutrient uptake and stress tolerance through symbiotic interactions. However, biotechnological tools lead to the development of sorghum varieties with heat, drought and salinity tolerance, while marker-assisted selection significantly accelerates breeding for stress-resilient traits. When genetic engineering is introduced, genes encoding heat shock proteins, Osmo protectants and antioxidant pathways are introduced to increase plant resistance to abiotic stress. These compounds stabilise cellular structures, protect enzymes, and maintain osmotic balance, enhancing the plant's ability to survive and function in adverse environmental conditions. At the same time, it is reported that microbiology offers beneficial microbes, nitrogen-fixing bacteria, phosphate-solubilizing microorganisms, and arbuscular mycorrhizal fungi that help enhance nutrient availability, soil health and water uptake. Combinations of endophytes and microbial inoculants enhance plant immunity to pests and diseases while increasing tolerance to stress. Biocontrol agents such as Bacillus and Trichoderma contain suppression of pathogens and need less dependence on the use of chemical pesticides. On top of that, genetic modification increases the nutritional quality of sorghum biofortified. This is where biotechnology and microbiology work together to deliver sustainable farming systems reducing environmental impacts, boosting yields and securing food supply under environmental stresses. This review aims to examine the synergistic integration of plant biotechnology and microbial interactions as a strategy to enhance sorghum's resilience to climate-induced stresses, including drought, elevated temperatures, and nutrient-deficient soils. It highlights recent advancements in biotechnological tools such as gene editing, marker-assisted selection, and tissue culture, alongside the emerging role of plant-beneficial microbes in promoting stress tolerance and improving soil health. By synthesizing current knowledge across these disciplines, this review seeks to outline a framework for future research that harnesses the intersection of biotechnology and microbial ecology to support the sustainable improvement of sorghum resilience.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.