ShiNyP: Unlocking SNP-Based Population Genetics-An AI-Assisted Platform for Rapid and Interactive Visual Exploration.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yen-Hsiang Huang, Ling-Yu Chen, Endang M Septiningsih, Pei-Hsiu Kao, Chung-Feng Kao
{"title":"ShiNyP: Unlocking SNP-Based Population Genetics-An AI-Assisted Platform for Rapid and Interactive Visual Exploration.","authors":"Yen-Hsiang Huang, Ling-Yu Chen, Endang M Septiningsih, Pei-Hsiu Kao, Chung-Feng Kao","doi":"10.1093/molbev/msaf117","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and accessible analysis of genome-wide single nucleotide polymorphism (SNP) data is vital for advancing molecular biology, evolutionary genetics, and breeding research. However, current analytical pipelines are often fragmented and require command-line expertise, limiting accessibility for many researchers. Here, we present ShiNyP, an interactive R/Shiny platform that integrates all popular SNP analysis modules within a single and intuitive user interface, supporting the entire workflow from data import and quality control to population structure inference, diversity analysis, selective scan, and core collection. ShiNyP accommodates datasets from haploid, diploid, and polyploid species and automates the generation of over 70 publication-ready visualizations and summary tables. A distinctive feature is its automated report module, which employs generative AI to deliver structured, interpretable narratives of complex statistical results. Performance benchmarks demonstrate that ShiNyP efficiently processes large-scale datasets on standard hardware. The ShiNyP platform is freely available at https://github.com/TeddYenn/ShiNyP, providing an efficient, reproducible, and user-friendly solution for population genomics research.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf117","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and accessible analysis of genome-wide single nucleotide polymorphism (SNP) data is vital for advancing molecular biology, evolutionary genetics, and breeding research. However, current analytical pipelines are often fragmented and require command-line expertise, limiting accessibility for many researchers. Here, we present ShiNyP, an interactive R/Shiny platform that integrates all popular SNP analysis modules within a single and intuitive user interface, supporting the entire workflow from data import and quality control to population structure inference, diversity analysis, selective scan, and core collection. ShiNyP accommodates datasets from haploid, diploid, and polyploid species and automates the generation of over 70 publication-ready visualizations and summary tables. A distinctive feature is its automated report module, which employs generative AI to deliver structured, interpretable narratives of complex statistical results. Performance benchmarks demonstrate that ShiNyP efficiently processes large-scale datasets on standard hardware. The ShiNyP platform is freely available at https://github.com/TeddYenn/ShiNyP, providing an efficient, reproducible, and user-friendly solution for population genomics research.

解锁基于snp的群体遗传学——一个人工智能辅助的快速互动视觉探索平台。
高效、便捷的全基因组单核苷酸多态性(SNP)数据分析对于推进分子生物学、进化遗传学和育种研究至关重要。然而,当前的分析管道通常是分散的,需要命令行专业知识,限制了许多研究人员的可访问性。在这里,我们展示了一个交互式R/Shiny平台ShiNyP,它将所有流行的SNP分析模块集成在一个单一直观的用户界面中,支持从数据导入和质量控制到种群结构推断,多样性分析,选择性扫描和核心收集的整个工作流程。ShiNyP可容纳来自单倍体、二倍体和多倍体物种的数据集,并自动生成70多种可供发表的可视化和汇总表。它的一个显著特点是自动报告模块,该模块采用生成式人工智能,为复杂的统计结果提供结构化、可解释的叙述。性能基准测试表明,ShiNyP在标准硬件上有效地处理大规模数据集。ShiNyP平台可在https://github.com/TeddYenn/ShiNyP免费获得,为群体基因组学研究提供高效、可重复且用户友好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信