Hybridization chain reaction-based DNA nanoframeworks for biosensing and therapeutic applications.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhaoyue Lv, Peiran Li, Mingxing Liu, Chi Yao, Dayong Yang
{"title":"Hybridization chain reaction-based DNA nanoframeworks for biosensing and therapeutic applications.","authors":"Zhaoyue Lv, Peiran Li, Mingxing Liu, Chi Yao, Dayong Yang","doi":"10.1038/s41596-025-01183-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial DNA nanostructures, with their sequence programmability, precise molecular recognition and tunable stimuli responsiveness, bridge material chemistry and biomedicine. Here we detail the design and construction of hybridization chain reaction (HCR)-based DNA nanoframeworks, a class of DNA nanostructures with programmable sequences and customizable functions. HCR is an efficient, enzyme-free amplification strategy that isothermally produces nicked double-stranded DNA with periodically repeated modules via the assembly of two DNA hairpins, triggered by a DNA initiator. In contrast to other available assembly methods for the synthesis of DNA nanostructures, such as tile-mediated assembly, DNA origami and rolling circle amplification, the HCR method offers improved stability and efficiency under mild conditions, without reliance on enzymatic activity. The procedure uses radical polymerization to integrate DNA initiator into nanoframeworks, with overhangs complementary to functional sequences - termed linkers -which are amplified and incorporated through HCR. The linkers enable the incorporation of functional nucleic acid sequences. The HCR-based DNA nanoframeworks facilitate the loading capability of the delivered molecules, showing notable therapeutic efficacy and biosensing sensitivity. Preparation time for HCR-based DNA nanoframeworks ranges from 30 h to 45 h, depending on the payload.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01183-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial DNA nanostructures, with their sequence programmability, precise molecular recognition and tunable stimuli responsiveness, bridge material chemistry and biomedicine. Here we detail the design and construction of hybridization chain reaction (HCR)-based DNA nanoframeworks, a class of DNA nanostructures with programmable sequences and customizable functions. HCR is an efficient, enzyme-free amplification strategy that isothermally produces nicked double-stranded DNA with periodically repeated modules via the assembly of two DNA hairpins, triggered by a DNA initiator. In contrast to other available assembly methods for the synthesis of DNA nanostructures, such as tile-mediated assembly, DNA origami and rolling circle amplification, the HCR method offers improved stability and efficiency under mild conditions, without reliance on enzymatic activity. The procedure uses radical polymerization to integrate DNA initiator into nanoframeworks, with overhangs complementary to functional sequences - termed linkers -which are amplified and incorporated through HCR. The linkers enable the incorporation of functional nucleic acid sequences. The HCR-based DNA nanoframeworks facilitate the loading capability of the delivered molecules, showing notable therapeutic efficacy and biosensing sensitivity. Preparation time for HCR-based DNA nanoframeworks ranges from 30 h to 45 h, depending on the payload.

基于杂交链反应的DNA纳米框架的生物传感和治疗应用。
人工DNA纳米结构具有序列可编程性、精确的分子识别和可调的刺激反应能力,是材料化学和生物医学的桥梁。本文详细介绍了基于杂交链反应(HCR)的DNA纳米框架的设计和构建,这是一类具有可编程序列和可定制功能的DNA纳米结构。HCR是一种高效的无酶扩增策略,通过DNA引发剂触发的两个DNA发夹的组装,等温产生具有周期性重复模块的缺口双链DNA。与其他可用的DNA纳米结构合成方法(如瓷砖介导组装、DNA折纸和滚动圈扩增)相比,HCR方法在温和条件下提供了更好的稳定性和效率,而不依赖于酶活性。该程序使用自由基聚合将DNA引发剂整合到纳米框架中,与功能序列互补的悬空-称为连接体-通过HCR扩增和合并。所述连接体能够整合功能性核酸序列。基于hcr的DNA纳米框架促进了递送分子的装载能力,显示出显著的治疗效果和生物传感敏感性。基于hcr的DNA纳米框架的制备时间从30小时到45小时不等,这取决于有效载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信