Zhaoyue Lv, Peiran Li, Mingxing Liu, Chi Yao, Dayong Yang
{"title":"Hybridization chain reaction-based DNA nanoframeworks for biosensing and therapeutic applications.","authors":"Zhaoyue Lv, Peiran Li, Mingxing Liu, Chi Yao, Dayong Yang","doi":"10.1038/s41596-025-01183-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial DNA nanostructures, with their sequence programmability, precise molecular recognition and tunable stimuli responsiveness, bridge material chemistry and biomedicine. Here we detail the design and construction of hybridization chain reaction (HCR)-based DNA nanoframeworks, a class of DNA nanostructures with programmable sequences and customizable functions. HCR is an efficient, enzyme-free amplification strategy that isothermally produces nicked double-stranded DNA with periodically repeated modules via the assembly of two DNA hairpins, triggered by a DNA initiator. In contrast to other available assembly methods for the synthesis of DNA nanostructures, such as tile-mediated assembly, DNA origami and rolling circle amplification, the HCR method offers improved stability and efficiency under mild conditions, without reliance on enzymatic activity. The procedure uses radical polymerization to integrate DNA initiator into nanoframeworks, with overhangs complementary to functional sequences - termed linkers -which are amplified and incorporated through HCR. The linkers enable the incorporation of functional nucleic acid sequences. The HCR-based DNA nanoframeworks facilitate the loading capability of the delivered molecules, showing notable therapeutic efficacy and biosensing sensitivity. Preparation time for HCR-based DNA nanoframeworks ranges from 30 h to 45 h, depending on the payload.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01183-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial DNA nanostructures, with their sequence programmability, precise molecular recognition and tunable stimuli responsiveness, bridge material chemistry and biomedicine. Here we detail the design and construction of hybridization chain reaction (HCR)-based DNA nanoframeworks, a class of DNA nanostructures with programmable sequences and customizable functions. HCR is an efficient, enzyme-free amplification strategy that isothermally produces nicked double-stranded DNA with periodically repeated modules via the assembly of two DNA hairpins, triggered by a DNA initiator. In contrast to other available assembly methods for the synthesis of DNA nanostructures, such as tile-mediated assembly, DNA origami and rolling circle amplification, the HCR method offers improved stability and efficiency under mild conditions, without reliance on enzymatic activity. The procedure uses radical polymerization to integrate DNA initiator into nanoframeworks, with overhangs complementary to functional sequences - termed linkers -which are amplified and incorporated through HCR. The linkers enable the incorporation of functional nucleic acid sequences. The HCR-based DNA nanoframeworks facilitate the loading capability of the delivered molecules, showing notable therapeutic efficacy and biosensing sensitivity. Preparation time for HCR-based DNA nanoframeworks ranges from 30 h to 45 h, depending on the payload.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.