Young-Mee Kim, Mark A Sanborn, Shaluah Vijeth, Priyanka Gajwani, Xinge Wang, Dahee Jung, Tibor Valyi-Nagy, Sreeparna Chakraborty, Georgina Mancinelli, Peter T Toth, Evan H Phillips, Paul Grippo, Ameen A Salahudeen, Jooman Park, Su Yeon Yeon, Vijayalakshmi Ananthanarayanan, Yuwei Jiang, Steve Seung-Young Lee, Klara Valyi-Nagy, Jalees Rehman
{"title":"Skeletal muscle endothelial dysfunction through the activin A-PGC1α axis drives progression of cancer cachexia.","authors":"Young-Mee Kim, Mark A Sanborn, Shaluah Vijeth, Priyanka Gajwani, Xinge Wang, Dahee Jung, Tibor Valyi-Nagy, Sreeparna Chakraborty, Georgina Mancinelli, Peter T Toth, Evan H Phillips, Paul Grippo, Ameen A Salahudeen, Jooman Park, Su Yeon Yeon, Vijayalakshmi Ananthanarayanan, Yuwei Jiang, Steve Seung-Young Lee, Klara Valyi-Nagy, Jalees Rehman","doi":"10.1038/s43018-025-00975-6","DOIUrl":null,"url":null,"abstract":"<p><p>Cachexia is the wasting of skeletal muscle in cancer and is a major complication that impacts a person's quality of life. We hypothesized that cachexia is mediated by dysfunction of the vascular system, which is essential for maintaining perfusion and tempering inappropriate immune responses. Using transparent tissue topography, we discovered that loss of muscle vascular density precedes muscle wasting in multiple complementary tumor models, including pancreatic adenocarcinoma, colon carcinoma, lung adenocarcinoma and melanoma models. We also observed that persons suffering from cancer cachexia exhibit substantial loss of muscle vascular density. As tumors progress, increased circulating activin A remotely suppresses the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) in the muscle endothelium, thus inducing vascular leakage. Restoring endothelial PGC1α activity preserved vascular density and muscle mass in tumor-bearing mice. Our study suggests that restoring muscle endothelial function could be a valuable therapeutic approach for cancer cachexia.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00975-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cachexia is the wasting of skeletal muscle in cancer and is a major complication that impacts a person's quality of life. We hypothesized that cachexia is mediated by dysfunction of the vascular system, which is essential for maintaining perfusion and tempering inappropriate immune responses. Using transparent tissue topography, we discovered that loss of muscle vascular density precedes muscle wasting in multiple complementary tumor models, including pancreatic adenocarcinoma, colon carcinoma, lung adenocarcinoma and melanoma models. We also observed that persons suffering from cancer cachexia exhibit substantial loss of muscle vascular density. As tumors progress, increased circulating activin A remotely suppresses the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) in the muscle endothelium, thus inducing vascular leakage. Restoring endothelial PGC1α activity preserved vascular density and muscle mass in tumor-bearing mice. Our study suggests that restoring muscle endothelial function could be a valuable therapeutic approach for cancer cachexia.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.