{"title":"Performance Analysis of DCMD Modules Enhanced with 3D-Printed Turbulence Promoters of Various Hydraulic Diameters.","authors":"Chii-Dong Ho, Ming-Shen Chiang, Choon Aun Ng","doi":"10.3390/membranes15050144","DOIUrl":null,"url":null,"abstract":"<p><p>Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant temperature for the cold inlet stream. The temperature difference between the two streams creates a gradient across the membrane surfaces, leading to thermal energy dissipation due to temperature polarization effects. To address this challenge, 3D-printed turbulence promoters were incorporated into the DCMD modules. Acting as eddy promoters, these structures aim to reduce the temperature polarization effect, thereby enhancing permeate flux and improving pure water productivity. Various designs of promoter-filled channels-with differing array configurations and geometric shapes-were implemented to optimize flow characteristics and further mitigate polarization effects. Theoretical predictions were validated against experimental results across a range of process parameters, including inlet temperatures, volumetric flow rates, hydraulic diameters, and flow configurations, with deviations within 10%. The DCMD module with the inserted 3D-printed turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 91.73% under the descending diamond-type module in comparison with the module of using the no-promoter-filled channel. The modeling equations demonstrated technical feasibility, particularly with the use of both descending and ascending hydraulic diameters of 3D-printed turbulence promoters inserted into the saline feed stream, as compared to a module using an empty channel.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15050144","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant temperature for the cold inlet stream. The temperature difference between the two streams creates a gradient across the membrane surfaces, leading to thermal energy dissipation due to temperature polarization effects. To address this challenge, 3D-printed turbulence promoters were incorporated into the DCMD modules. Acting as eddy promoters, these structures aim to reduce the temperature polarization effect, thereby enhancing permeate flux and improving pure water productivity. Various designs of promoter-filled channels-with differing array configurations and geometric shapes-were implemented to optimize flow characteristics and further mitigate polarization effects. Theoretical predictions were validated against experimental results across a range of process parameters, including inlet temperatures, volumetric flow rates, hydraulic diameters, and flow configurations, with deviations within 10%. The DCMD module with the inserted 3D-printed turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 91.73% under the descending diamond-type module in comparison with the module of using the no-promoter-filled channel. The modeling equations demonstrated technical feasibility, particularly with the use of both descending and ascending hydraulic diameters of 3D-printed turbulence promoters inserted into the saline feed stream, as compared to a module using an empty channel.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.