Microplasma-Mediated Enhancement of FD-150 Uptake in HL-60 Cells.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Mahedi Hasan, Jaroslav Kristof, Abubakar Hamza Sadiq, Md Jahangir Alam, Sadia Afrin Rimi, Farhana Begum, Kazuo Shimizu
{"title":"Microplasma-Mediated Enhancement of FD-150 Uptake in HL-60 Cells.","authors":"Mahedi Hasan, Jaroslav Kristof, Abubakar Hamza Sadiq, Md Jahangir Alam, Sadia Afrin Rimi, Farhana Begum, Kazuo Shimizu","doi":"10.3390/membranes15050156","DOIUrl":null,"url":null,"abstract":"<p><p>Lipids are the primary components of cell membranes, and their properties can be temporarily modified by microplasma-generated species to enhance drug uptake. The ability of microplasmas to influence membrane dynamics has made them effective tools for facilitating drug uptake into cells. Despite this, the effect of microplasma irradiation on cell membranes is yet to be investigated. We investigated the effects of microplasma irradiation on fluorescein isothiocyanate-dextran 150 (FD-150) uptake in Human Promyelocytic Leukemia (HL-60) cells, with the focus on transmembrane potential and lipid order changes. Plasma was applied to HL-60 cells for five, seven, and ten minutes. Fluorescence intensity measurements showed that an uptake of FD-150 increased with treatment time, before declining at ten minutes of treatment. Following treatment, transmembrane potential analysis indicated transient hyperpolarization followed by gradual depolarization until 60 min, corresponding to increased FD-150 absorption. Analysis of the lipid order showed a more disordered membrane state, with the most pronounced changes observed at ten minutes. The increase in lipid disorder increases membrane permeability while excessive disruption of the lipid order impairs cell viability. These findings demonstrate the potential of plasma-generated reactive species in modulating membrane characteristics for intracellular drug delivery.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15050156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lipids are the primary components of cell membranes, and their properties can be temporarily modified by microplasma-generated species to enhance drug uptake. The ability of microplasmas to influence membrane dynamics has made them effective tools for facilitating drug uptake into cells. Despite this, the effect of microplasma irradiation on cell membranes is yet to be investigated. We investigated the effects of microplasma irradiation on fluorescein isothiocyanate-dextran 150 (FD-150) uptake in Human Promyelocytic Leukemia (HL-60) cells, with the focus on transmembrane potential and lipid order changes. Plasma was applied to HL-60 cells for five, seven, and ten minutes. Fluorescence intensity measurements showed that an uptake of FD-150 increased with treatment time, before declining at ten minutes of treatment. Following treatment, transmembrane potential analysis indicated transient hyperpolarization followed by gradual depolarization until 60 min, corresponding to increased FD-150 absorption. Analysis of the lipid order showed a more disordered membrane state, with the most pronounced changes observed at ten minutes. The increase in lipid disorder increases membrane permeability while excessive disruption of the lipid order impairs cell viability. These findings demonstrate the potential of plasma-generated reactive species in modulating membrane characteristics for intracellular drug delivery.

微血浆介导增强HL-60细胞对FD-150的摄取。
脂质是细胞膜的主要成分,它们的性质可以被微血浆产生的物种暂时改变,以增强药物的吸收。微浆体影响膜动力学的能力使它们成为促进药物进入细胞的有效工具。尽管如此,微等离子体辐照对细胞膜的影响还有待研究。我们研究了微等离子体辐照对人早幼粒细胞白血病(HL-60)细胞摄取荧光素异硫氰酸酯-葡聚糖150 (FD-150)的影响,重点是跨膜电位和脂质顺序的变化。血浆作用于HL-60细胞5分钟、7分钟和10分钟。荧光强度测量显示,FD-150的摄取随处理时间的增加而增加,在处理10分钟后下降。处理后,跨膜电位分析显示瞬时超极化,然后逐渐去极化直到60分钟,对应于FD-150吸收增加。脂质顺序分析显示膜状态更加混乱,在10分钟时观察到最明显的变化。脂质紊乱的增加增加了膜的通透性,而脂质秩序的过度破坏则损害了细胞的活力。这些发现证明了血浆产生的活性物质在调节细胞内药物传递的膜特性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信