{"title":"Urine Metabolomic Profiling and Machine Learning in Autism Spectrum Disorder Diagnosis: Toward Precision Treatment.","authors":"Shula Shazman, Julie Carmel, Maxim Itkin, Sergey Malitsky, Monia Shalan, Eyal Soreq, Evan Elliott, Maya Lebow, Yael Kuperman","doi":"10.3390/metabo15050332","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) diagnosis traditionally relies on behavioral assessments, which can be subjective and often lead to delayed identification. Recent advances in metabolomics and machine learning offer promising alternatives for more objective and precise diagnostic approaches.</p><p><strong>Methods: </strong>First-morning urine samples were collected from 52 children (32 with ASD and 20 neurotypical controls), aged 5.04 ± 1.87 and 5.50 ± 1.74 years, respectively. Using liquid chromatography-mass spectrometry (LC-MS), 293 metabolites were identified and categorized into 189 endogenous and 104 exogenous metabolites. Various machine learning classifiers (random forest, logistic regression, random tree, and naïve Bayes) were applied to differentiate ASD and control groups through 10-fold cross-validation.</p><p><strong>Results: </strong>The random forest classifier achieved 85% accuracy and an area under the curve (AUC) of 0.9 using all 293 metabolites. Classification based solely on endogenous metabolites yielded 85% accuracy and an AUC of 0.86, whereas using exogenous metabolites alone resulted in lower performance (71% accuracy and an AUC of 0.72).</p><p><strong>Conclusion: </strong>This study demonstrates the potential of urine metabolomic profiling, particularly endogenous metabolites, as a complementary diagnostic tool for ASD. The high classification accuracy highlights the feasibility of developing assistive diagnostic methods based on metabolite profiles, although further research is needed to link these profiles to specific behavioral characteristics and ASD subtypes.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15050332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autism spectrum disorder (ASD) diagnosis traditionally relies on behavioral assessments, which can be subjective and often lead to delayed identification. Recent advances in metabolomics and machine learning offer promising alternatives for more objective and precise diagnostic approaches.
Methods: First-morning urine samples were collected from 52 children (32 with ASD and 20 neurotypical controls), aged 5.04 ± 1.87 and 5.50 ± 1.74 years, respectively. Using liquid chromatography-mass spectrometry (LC-MS), 293 metabolites were identified and categorized into 189 endogenous and 104 exogenous metabolites. Various machine learning classifiers (random forest, logistic regression, random tree, and naïve Bayes) were applied to differentiate ASD and control groups through 10-fold cross-validation.
Results: The random forest classifier achieved 85% accuracy and an area under the curve (AUC) of 0.9 using all 293 metabolites. Classification based solely on endogenous metabolites yielded 85% accuracy and an AUC of 0.86, whereas using exogenous metabolites alone resulted in lower performance (71% accuracy and an AUC of 0.72).
Conclusion: This study demonstrates the potential of urine metabolomic profiling, particularly endogenous metabolites, as a complementary diagnostic tool for ASD. The high classification accuracy highlights the feasibility of developing assistive diagnostic methods based on metabolite profiles, although further research is needed to link these profiles to specific behavioral characteristics and ASD subtypes.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.