Synergistic Impact of Aerobic Exercise and Resveratrol on White Adipose Tissue Browning in Obese Rats: Mechanistic Exploration and Biological Insights.
{"title":"Synergistic Impact of Aerobic Exercise and Resveratrol on White Adipose Tissue Browning in Obese Rats: Mechanistic Exploration and Biological Insights.","authors":"Yulong Hu, Yihan Wu, Chunlong Wang, Qiguan Jin, Xianghe Chen","doi":"10.3390/metabo15050331","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity, marked by excessive white adipose tissue (WAT) accumulation, worsens metabolic disorders, and inducing WAT browning is a promising therapy. This study examined the synergistic effects of moderate-intensity aerobic training and resveratrol (RES) on WAT browning and its underlying mechanisms in obese male rats. <b>Methods:</b> Male Sprague Dawley rats were divided into a normal diet control group (<i>n</i> = 8) and a high-fat-diet modeling group (<i>n</i> = 32), with the rats in the latter group being further divided randomly in groups of eight into a high-fat group; a high-fat, exercise group; a high-fat, RES group; and a high-fat, exercise-combined-with-RES group. The rats in the exercise intervention groups underwent moderate-intensity aerobic treadmill exercise for one hour daily, six days a week, while those in the RES groups received a 50 mg/kg/d RES solution via gavage before exercise, once daily, six days a week. Both interventions lasted eight weeks. <b>Results:</b> The combined intervention synergistically suppressed weight gain and visceral fat accumulation. WAT browning was enhanced, evidenced by upregulated UCP1 and CIDEA expression. Mitochondrial biogenesis was activated via the SIRT1-PGC-1α-NRF-1-TFAM pathway, accompanied by elevated mitochondrial enzyme activity and improved lipid mobilization (reduced serum free fatty acids and triglycerides). <b>Conclusions:</b> The combination of aerobic exercise and RES promotes WAT browning and lipolysis by enhancing mitochondrial biogenesis and stimulating mitochondrial thermogenesis through the modulation of the SIRT1-PGC-1α-NRF-1-TFAM pathway.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15050331","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity, marked by excessive white adipose tissue (WAT) accumulation, worsens metabolic disorders, and inducing WAT browning is a promising therapy. This study examined the synergistic effects of moderate-intensity aerobic training and resveratrol (RES) on WAT browning and its underlying mechanisms in obese male rats. Methods: Male Sprague Dawley rats were divided into a normal diet control group (n = 8) and a high-fat-diet modeling group (n = 32), with the rats in the latter group being further divided randomly in groups of eight into a high-fat group; a high-fat, exercise group; a high-fat, RES group; and a high-fat, exercise-combined-with-RES group. The rats in the exercise intervention groups underwent moderate-intensity aerobic treadmill exercise for one hour daily, six days a week, while those in the RES groups received a 50 mg/kg/d RES solution via gavage before exercise, once daily, six days a week. Both interventions lasted eight weeks. Results: The combined intervention synergistically suppressed weight gain and visceral fat accumulation. WAT browning was enhanced, evidenced by upregulated UCP1 and CIDEA expression. Mitochondrial biogenesis was activated via the SIRT1-PGC-1α-NRF-1-TFAM pathway, accompanied by elevated mitochondrial enzyme activity and improved lipid mobilization (reduced serum free fatty acids and triglycerides). Conclusions: The combination of aerobic exercise and RES promotes WAT browning and lipolysis by enhancing mitochondrial biogenesis and stimulating mitochondrial thermogenesis through the modulation of the SIRT1-PGC-1α-NRF-1-TFAM pathway.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.