{"title":"A systematic review of marine macroalgal degradation: Toward a better understanding of macroalgal carbon sequestration potential.","authors":"Jessica R Kennedy, Caitlin O Blain","doi":"10.1111/jpy.70031","DOIUrl":null,"url":null,"abstract":"<p><p>Although macroalgae are gaining recognition for their potential role in marine carbon sequestration, critical knowledge gaps related to the fate of macroalgal carbon limit our capacity to quantify rates of macroalgal carbon sequestration. Understanding the degradation dynamics of macroalgal-derived biomaterials-including tissue/wrack, particulate organic matter/carbon (POM/POC), and dissolved organic carbon (DOC)-as well as the environmental drivers of decomposition are critical for assessing the longevity of macroalgal carbon and the potential storage capacity of macroalgae. Thus, a systematic literature review of macroalgal degradation studies was conducted to compile data, estimate the relative recalcitrance (i.e., relative stability) of macroalgal biomaterials, and elucidate key drivers of macroalgal decomposition dynamics. We found that macroalgal decay trajectories are highly variable and not always best described by the often-cited exponential decay models. Our analysis demonstrated that temperature was a notable driver of decomposition, with higher temperatures eliciting faster rates of decomposition. Furthermore, we found that brown algae had significantly higher proportions of recalcitrant biomaterials when compared to red algae. The impact of other factors, including biomaterial type, degradation environment, and tissue carbon and nitrogen content on macroalgal degradation, is variable across contexts, warranting further study. These results help to provide a foundation from which to plan and assess future studies on macroalgal degradation, which will improve our understanding of how macroalgae contribute to marine carbon cycles, trophic subsidies, and, potentially, marine carbon sequestration.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although macroalgae are gaining recognition for their potential role in marine carbon sequestration, critical knowledge gaps related to the fate of macroalgal carbon limit our capacity to quantify rates of macroalgal carbon sequestration. Understanding the degradation dynamics of macroalgal-derived biomaterials-including tissue/wrack, particulate organic matter/carbon (POM/POC), and dissolved organic carbon (DOC)-as well as the environmental drivers of decomposition are critical for assessing the longevity of macroalgal carbon and the potential storage capacity of macroalgae. Thus, a systematic literature review of macroalgal degradation studies was conducted to compile data, estimate the relative recalcitrance (i.e., relative stability) of macroalgal biomaterials, and elucidate key drivers of macroalgal decomposition dynamics. We found that macroalgal decay trajectories are highly variable and not always best described by the often-cited exponential decay models. Our analysis demonstrated that temperature was a notable driver of decomposition, with higher temperatures eliciting faster rates of decomposition. Furthermore, we found that brown algae had significantly higher proportions of recalcitrant biomaterials when compared to red algae. The impact of other factors, including biomaterial type, degradation environment, and tissue carbon and nitrogen content on macroalgal degradation, is variable across contexts, warranting further study. These results help to provide a foundation from which to plan and assess future studies on macroalgal degradation, which will improve our understanding of how macroalgae contribute to marine carbon cycles, trophic subsidies, and, potentially, marine carbon sequestration.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.