Fibroblast reprogramming in the dura mater of NTG-induced migraine-related chronic hypersensitivity model drives monocyte infiltration via Angptl1-dependent stromal signaling.
Guangyu Guo, Lei Zhang, Xuyang Liu, Yiping Deng, Peiyu Wu, Ruofan Zhao, Wei Wang
{"title":"Fibroblast reprogramming in the dura mater of NTG-induced migraine-related chronic hypersensitivity model drives monocyte infiltration via Angptl1-dependent stromal signaling.","authors":"Guangyu Guo, Lei Zhang, Xuyang Liu, Yiping Deng, Peiyu Wu, Ruofan Zhao, Wei Wang","doi":"10.1186/s10194-025-02058-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Migraine, characterized by recurrent episodes of severe headache, remains mechanistically enigmatic. While traditional theories emphasize trigeminovascular activation, the role of meningeal stromal-immune crosstalk in disease chronicity is poorly understood.</p><p><strong>Methods: </strong>A migraine-related chronic hypersensitivity model was utilized via intermittent intraperitoneal nitroglycerin (NTG, 10 mg/kg, every other day for 9 days) and peripheral mechanical hypersensitivity was assessed using von Frey filaments. Single-cell RNA sequencing (scRNA-seq) was performed on dura tissues to construct a cellular atlas of NTG-induced remodeling. These data were then integrated with migraine genome-wide association study (GWAS) risk genes, cell-cell interaction networks, and transcriptional regulation analysis to dissect NTG-driven meningeal remodeling.</p><p><strong>Results: </strong>The NTG-induced migraine-related chronic hypersensitivity model demonstrated sustained mechanical allodynia, as evidenced by significantly decreased paw withdrawal thresholds (p < 0.0001). Single-cell profiling of the dura mater revealed a 2.4-fold expansion of a pro-inflammatory fibroblast subpopulation (Fibro_c5: 1.9% in Vehicle vs. 4.6% in NTG group), which exhibited marked activation of TNF-α/NF-κB signaling pathways (normalized enrichment score [NES] = 1.83). Concomitantly, we observed an 82% increase in meningeal monocytes (5.7-10.4%) that showed preferential interaction with Fibro_c5 fibroblasts through Angptl1-mediated stromal-immune crosstalk (log2 fold change = 1.41). Regulatory network analysis identified Mafk as the upstream transcriptional regulator orchestrating Angptl1 expression in this pathological communication axis.</p><p><strong>Conclusion: </strong>Our study reveals that NTG reprograms meningeal fibroblasts to expand a pro-inflammatory fibroblast subtype, which drives migraine-related chronic hypersensitivity through TNF-α/NF-κB signaling and Angptl1-mediated monocyte crosstalk. The identified Mafk-Angptl1 axis presents a potential therapeutic target, though human validation remains essential.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"130"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-02058-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Migraine, characterized by recurrent episodes of severe headache, remains mechanistically enigmatic. While traditional theories emphasize trigeminovascular activation, the role of meningeal stromal-immune crosstalk in disease chronicity is poorly understood.
Methods: A migraine-related chronic hypersensitivity model was utilized via intermittent intraperitoneal nitroglycerin (NTG, 10 mg/kg, every other day for 9 days) and peripheral mechanical hypersensitivity was assessed using von Frey filaments. Single-cell RNA sequencing (scRNA-seq) was performed on dura tissues to construct a cellular atlas of NTG-induced remodeling. These data were then integrated with migraine genome-wide association study (GWAS) risk genes, cell-cell interaction networks, and transcriptional regulation analysis to dissect NTG-driven meningeal remodeling.
Results: The NTG-induced migraine-related chronic hypersensitivity model demonstrated sustained mechanical allodynia, as evidenced by significantly decreased paw withdrawal thresholds (p < 0.0001). Single-cell profiling of the dura mater revealed a 2.4-fold expansion of a pro-inflammatory fibroblast subpopulation (Fibro_c5: 1.9% in Vehicle vs. 4.6% in NTG group), which exhibited marked activation of TNF-α/NF-κB signaling pathways (normalized enrichment score [NES] = 1.83). Concomitantly, we observed an 82% increase in meningeal monocytes (5.7-10.4%) that showed preferential interaction with Fibro_c5 fibroblasts through Angptl1-mediated stromal-immune crosstalk (log2 fold change = 1.41). Regulatory network analysis identified Mafk as the upstream transcriptional regulator orchestrating Angptl1 expression in this pathological communication axis.
Conclusion: Our study reveals that NTG reprograms meningeal fibroblasts to expand a pro-inflammatory fibroblast subtype, which drives migraine-related chronic hypersensitivity through TNF-α/NF-κB signaling and Angptl1-mediated monocyte crosstalk. The identified Mafk-Angptl1 axis presents a potential therapeutic target, though human validation remains essential.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.