{"title":"Vacuolar Proteases of <i>Candida auris</i> from Clades III and IV and Their Relationship with Autophagy.","authors":"Daniel Clark-Flores, Alvaro Vidal-Montiel, Ricardo Mondragón-Flores, Eulogio Valentín-Gómez, César Hernández-Rodríguez, Margarita Juárez-Montiel, Lourdes Villa-Tanaca","doi":"10.3390/jof11050388","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida auris</i> is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. A fundamental part of this process is mediated by vacuolar proteases, which play an essential role in the degradation and recycling of cellular components. The present work explores the relationship between <i>C. auris</i> vacuolar peptidases and autophagy, aiming to establish a precedent for understanding the survival mechanisms of this emerging fungus. Thus, eight genes encoding putative vacuolar peptidases in the <i>C. auris</i> genomes were identified: <i>PEP4</i>, <i>PRB1</i>, <i>PRC1</i>, <i>ATG42</i>, <i>CPS</i>, <i>LAP4</i>, <i>APE3</i>, and <i>DAP2</i>. Analysis of the protein domains and their phylogenetic relationships suggests that these enzymes are orthologs of <i>Saccharomyces cerevisiae</i> vacuolar peptidases. Notably, both vacuolar protease gene expression and the proteolytic activity of cell-free extracts increased under nutritional stress and rapamycin. An increase in the expression of the <i>ATG8</i> gene and the presence of autophagic bodies were also observed. These results suggest that proteases could play a role in yeast autophagy and survival during starvation conditions.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11050388","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. A fundamental part of this process is mediated by vacuolar proteases, which play an essential role in the degradation and recycling of cellular components. The present work explores the relationship between C. auris vacuolar peptidases and autophagy, aiming to establish a precedent for understanding the survival mechanisms of this emerging fungus. Thus, eight genes encoding putative vacuolar peptidases in the C. auris genomes were identified: PEP4, PRB1, PRC1, ATG42, CPS, LAP4, APE3, and DAP2. Analysis of the protein domains and their phylogenetic relationships suggests that these enzymes are orthologs of Saccharomyces cerevisiae vacuolar peptidases. Notably, both vacuolar protease gene expression and the proteolytic activity of cell-free extracts increased under nutritional stress and rapamycin. An increase in the expression of the ATG8 gene and the presence of autophagic bodies were also observed. These results suggest that proteases could play a role in yeast autophagy and survival during starvation conditions.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.