Beyond Biomarkers: Machine Learning-Driven Multiomics for Personalized Medicine in Gastric Cancer.

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Dongheng Ma, Canfeng Fan, Tomoya Sano, Kyoka Kawabata, Hinano Nishikubo, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Yurie Yamamoto, Tasuku Matsuoka, Masakazu Yashiro
{"title":"Beyond Biomarkers: Machine Learning-Driven Multiomics for Personalized Medicine in Gastric Cancer.","authors":"Dongheng Ma, Canfeng Fan, Tomoya Sano, Kyoka Kawabata, Hinano Nishikubo, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Yurie Yamamoto, Tasuku Matsuoka, Masakazu Yashiro","doi":"10.3390/jpm15050166","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with most cases diagnosed at advanced stages. Traditional biomarkers provide only partial insights into GC's heterogeneity. Recent advances in machine learning (ML)-driven multiomics technologies, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, pathomics, and radiomics, have facilitated a deeper understanding of GC by integrating molecular and imaging data. In this review, we summarize the current landscape of ML-based multiomics integration for GC, highlighting its role in precision diagnosis, prognosis prediction, and biomarker discovery for achieving personalized medicine.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15050166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with most cases diagnosed at advanced stages. Traditional biomarkers provide only partial insights into GC's heterogeneity. Recent advances in machine learning (ML)-driven multiomics technologies, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, pathomics, and radiomics, have facilitated a deeper understanding of GC by integrating molecular and imaging data. In this review, we summarize the current landscape of ML-based multiomics integration for GC, highlighting its role in precision diagnosis, prognosis prediction, and biomarker discovery for achieving personalized medicine.

超越生物标志物:机器学习驱动的多组学用于胃癌的个性化医疗。
胃癌(GC)仍然是全球癌症相关死亡的主要原因之一,大多数病例在晚期被诊断出来。传统的生物标志物只能提供部分的GC异质性信息。机器学习(ML)驱动的多组学技术的最新进展,包括基因组学、表观基因组学、转录组学、蛋白质组学、代谢组学、病理组学和放射组学,通过整合分子和成像数据,促进了对GC的更深入了解。在这篇综述中,我们总结了基于ml的GC多组学整合的现状,强调了其在精确诊断、预后预测和生物标志物发现方面的作用,以实现个性化医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信