Research Progress in Medical Biomaterials for Bone Infections.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Tianxu Lian, Yiwei Wang, Pengfei Zheng
{"title":"Research Progress in Medical Biomaterials for Bone Infections.","authors":"Tianxu Lian, Yiwei Wang, Pengfei Zheng","doi":"10.3390/jfb16050189","DOIUrl":null,"url":null,"abstract":"<p><p>Bone infection is a debilitating condition characterized by inflammation of the bone and its marrow. It poses significant challenges in clinical practice due to its recalcitrant nature and difficulty in eradicating the infecting microorganisms. Recent advancements in the field of medical biomaterials have shown hope in the treatment of bone infections. This article reviews the research progress of medical biomaterials for anti-osteomyelitis in recent years, focusing on the mechanism of action, unique advantages, and application backgrounds of various materials. At the same time, we pay attention to the need for materials used in the treatment of osteomyelitis to promote bone healing.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 5","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16050189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone infection is a debilitating condition characterized by inflammation of the bone and its marrow. It poses significant challenges in clinical practice due to its recalcitrant nature and difficulty in eradicating the infecting microorganisms. Recent advancements in the field of medical biomaterials have shown hope in the treatment of bone infections. This article reviews the research progress of medical biomaterials for anti-osteomyelitis in recent years, focusing on the mechanism of action, unique advantages, and application backgrounds of various materials. At the same time, we pay attention to the need for materials used in the treatment of osteomyelitis to promote bone healing.

骨感染医学生物材料的研究进展。
骨感染是一种使人衰弱的疾病,其特征是骨骼和骨髓的炎症。由于其顽固性和难以根除感染微生物,在临床实践中提出了重大挑战。医学生物材料领域的最新进展为骨感染的治疗带来了希望。本文综述了近年来抗骨髓炎医用生物材料的研究进展,重点介绍了各种材料的作用机制、独特优势和应用背景。同时,我们要注意治疗骨髓炎所使用的材料需要促进骨愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信