Thilini Weerasinghe, Josh Li, Xuanye Chen, Jiayang Gao, Lei Tian, Yan Xu, Yihan Gong, Weijie Huang, Yuelin Zhang, Liwen Jiang, Xin Li
{"title":"Autophagy-Related Proteins (ATGs) Are Differentially Required for Development and Virulence of <i>Sclerotinia sclerotiorum</i>.","authors":"Thilini Weerasinghe, Josh Li, Xuanye Chen, Jiayang Gao, Lei Tian, Yan Xu, Yihan Gong, Weijie Huang, Yuelin Zhang, Liwen Jiang, Xin Li","doi":"10.3390/jof11050391","DOIUrl":null,"url":null,"abstract":"<p><p><i>Sclerotinia sclerotiorum</i> is a devastating fungal pathogen that can colonize numerous crops. Despite its economic importance, the regulation of its development and pathogenicity remains poorly understood. From a forward genetic screen in <i>S. sclerotiorum</i>, six UV mutants were identified with loss-of-function mutations in <i>SsATG1</i>, <i>SsATG2</i>, <i>SsATG4</i>, <i>SsATG5</i>, <i>SsATG9</i>, and <i>SsATG26</i>. Functional validation through gene knockouts revealed that each <i>ATG</i> is essential for sclerotia formation, although the morphology of appressoria was not significantly altered in the mutants. Different levels of virulence attenuation were observed among these mutants. Autophagy, monitored using GFP-ATG8, showed dynamic activities during sclerotia development. These findings suggest that macroautophagy and pexophagy contribute to sclerotia maturation and virulence processes. Future work will reveal how autophagy controls target organelle or protein turnover to regulate these processes.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11050391","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sclerotinia sclerotiorum is a devastating fungal pathogen that can colonize numerous crops. Despite its economic importance, the regulation of its development and pathogenicity remains poorly understood. From a forward genetic screen in S. sclerotiorum, six UV mutants were identified with loss-of-function mutations in SsATG1, SsATG2, SsATG4, SsATG5, SsATG9, and SsATG26. Functional validation through gene knockouts revealed that each ATG is essential for sclerotia formation, although the morphology of appressoria was not significantly altered in the mutants. Different levels of virulence attenuation were observed among these mutants. Autophagy, monitored using GFP-ATG8, showed dynamic activities during sclerotia development. These findings suggest that macroautophagy and pexophagy contribute to sclerotia maturation and virulence processes. Future work will reveal how autophagy controls target organelle or protein turnover to regulate these processes.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.