Xinyu Zhang, Qianhe Zu, Chunlin Deng, Xin Gao, Hongxu Liu, Yi Jin, Xinjian Yang, Enjun Wang
{"title":"Biodegradable Double-Layer Hydrogels with Sequential Drug Release for Multi-Phase Collaborative Regulation in Scar-Free Wound Healing.","authors":"Xinyu Zhang, Qianhe Zu, Chunlin Deng, Xin Gao, Hongxu Liu, Yi Jin, Xinjian Yang, Enjun Wang","doi":"10.3390/jfb16050164","DOIUrl":null,"url":null,"abstract":"<p><p>Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This study introduces a double-layer hydrogel system designed for sequential drug release, aligning with the stage-specific need for wound healing. The lower layer, containing curcumin-loaded chitosan nanoparticles, shows early anti-inflammatory and antioxidant effects, while the upper layer, with pirfenidone-encapsulated gelatin microspheres, presents late-stage anti-fibrotic activity. The hydrogel's unique design, with varying degradation rates and mechanical properties in each layer, facilitates cascade drug release in synchrony with wound healing stages. Rapid release of curcumin from the lower layer promotes proliferation by mitigating inflammation and oxidative stress, while the sustained release of pirfenidone from the upper layer inhibits excessive fibrillation during late proliferation and remodeling. In a rat model of full-thickness skin defect, treatment with a double-layer hydrogel drug delivery system accelerated the wound closure, improved scar quality, and promoted the formation of hair follicles. Therefore, this innovative approach lays a promising foundation for future clinical applications in anti-scar therapies, offering a significant advancement in wound care and regenerative medicine.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 5","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16050164","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Scarring is a prevalent and often undesirable outcome of the wound healing process, impacting millions worldwide. The complex and dynamic nature of wound healing, including hemostasis, inflammation, proliferation, and remodeling, necessitates precise, making it hard for stage-specific interventions to prevent pathological scarring. This study introduces a double-layer hydrogel system designed for sequential drug release, aligning with the stage-specific need for wound healing. The lower layer, containing curcumin-loaded chitosan nanoparticles, shows early anti-inflammatory and antioxidant effects, while the upper layer, with pirfenidone-encapsulated gelatin microspheres, presents late-stage anti-fibrotic activity. The hydrogel's unique design, with varying degradation rates and mechanical properties in each layer, facilitates cascade drug release in synchrony with wound healing stages. Rapid release of curcumin from the lower layer promotes proliferation by mitigating inflammation and oxidative stress, while the sustained release of pirfenidone from the upper layer inhibits excessive fibrillation during late proliferation and remodeling. In a rat model of full-thickness skin defect, treatment with a double-layer hydrogel drug delivery system accelerated the wound closure, improved scar quality, and promoted the formation of hair follicles. Therefore, this innovative approach lays a promising foundation for future clinical applications in anti-scar therapies, offering a significant advancement in wound care and regenerative medicine.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.