{"title":"Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study.","authors":"Han Na Suh, Ju Young Ji, Jung Sun Heo","doi":"10.3390/jfb16050177","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs.</p><p><strong>Methods: </strong>Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from <i>Porphyromonas gingivalis</i> to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells.</p><p><strong>Results: </strong>We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca<sup>2+</sup>]<sub>i</sub>, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison.</p><p><strong>Conclusions: </strong>Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 5","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12112599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16050177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs.
Methods: Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from Porphyromonas gingivalis to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells.
Results: We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca2+]i, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison.
Conclusions: Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.