{"title":"Biocompatible PLA/<i>spirulina</i> microparticles via electrospraying for targeted drug delivery in HUVEC and HaCaT cell lines.","authors":"Basak Dalbayrak, Isil Aksan Kurnaz, Sumeyye Cesur, Oguzhan Gunduz, Elif Damla Arısan","doi":"10.1080/09205063.2025.2503928","DOIUrl":null,"url":null,"abstract":"<p><p><i>Spirulina platensis,</i> well-known for its abundant nutrients and sustainability, shows potential as a microcarrier for various biotechnological uses. However, its natural degradability presents a challenge. Polylactic Acid (PLA) offers a solution due to its biodegradability and compatibility. By using the electrohydrodynamic atomization technique (electrospraying), precise control over microparticle characteristics like size, shape, and composition is achieved by adjusting parameters such as voltage, flow rate, and solution properties. In this research, microparticles made from <i>Spirulina</i> extract and PLA were created through electrospraying to act as microcarriers. Different formulations were tested, including 3% PLA and blends of <i>Spirulina</i> extract and PLA at concentrations of 0.125%, 0.25%, and 0.5% using chloroform and ethanol in the ratio of 19:1. Through various tests (MTT assay and colony formation test) the biocompatibility of producing microparticles was assessed using HUVEC and HaCaT cell lines, indicating these microparticles' potential for diverse applications as microcarrier systems.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2503928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spirulina platensis, well-known for its abundant nutrients and sustainability, shows potential as a microcarrier for various biotechnological uses. However, its natural degradability presents a challenge. Polylactic Acid (PLA) offers a solution due to its biodegradability and compatibility. By using the electrohydrodynamic atomization technique (electrospraying), precise control over microparticle characteristics like size, shape, and composition is achieved by adjusting parameters such as voltage, flow rate, and solution properties. In this research, microparticles made from Spirulina extract and PLA were created through electrospraying to act as microcarriers. Different formulations were tested, including 3% PLA and blends of Spirulina extract and PLA at concentrations of 0.125%, 0.25%, and 0.5% using chloroform and ethanol in the ratio of 19:1. Through various tests (MTT assay and colony formation test) the biocompatibility of producing microparticles was assessed using HUVEC and HaCaT cell lines, indicating these microparticles' potential for diverse applications as microcarrier systems.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.